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The Supplementary Appendix provides additional discussions and results. It is
organized as follows. Appendix B supplements Section 3, providing graphical illus-
trations of the six steps of the proof of Theorem 1.

Appendix C supplements the discussions in Section 4.2 about Bayesian equilibria.
Appendix D supplements Section 5, demonstrating the existence of a terminal space
for richer settings. Appendix D.1 establishes a terminal conditional-belief space, and
Appendix D.2 a terminal dynamic knowledge-belief space. Appendix D.3 discusses
further applications: knowledge and unawareness, preferences, and expectations.

Appendix E supplements Section 6, discussing the solution concepts of Iterated
Elimination of Strictly Dominated Actions (IESDA), Iterated Elimination of Börgers
Dominated Actions (IEBA), Iterated Elimination of Inferior Action Profiles (IEIP),
pure-strategy Nash equilibria, and correlated equilibria. Appendix F supplements
Section 7. It characterizes minimality. The proofs are relegated to Appendix G.

B Section 3

This section supplements the illustration of each step of the proof of Theorem 1
through figures. The first step starts with Definition 5, which inductively defines κ-
expressions: logical formulas defined solely in terms of (S,S) and players’ interactive
beliefs about (S,S).

The left panel of Figure S.1 illustrates Definition 5 and Remark 3. The bold
rectangle defines the collection of expressions L. As illustrated in the panel, I start
with events E in Aκ(S) (the inner-most dashed rectangle). This corresponds to the
base step of the inductive definition. The dashed arrow that connects the event E in
the set Aκ(S) (the solid small rectangle) and the expression E in the set Aκ(S) ⊆
L (the inner-most dashed rectangle) shows that each event E in the set Aκ(S) is
identified as a syntactic formula (i.e., an expression) in L.

The set of expressions L is closed, in particular, under the operation βi: for each
expression e, the expression βi(e) denotes “player i believes e.” The dashed arrow
from E to βi(E) illustrates this point. In light of Remark 3, βi(E) resides in L1. The
dashed rectangle that encloses the inner-most dashed rectangle (that represents the
set L0 = Aκ(S)) represents L1. Defining the sequence (Lα)κα=0 of expressions that

†Department of Decision Sciences and IGIER, Bocconi University, Milan 20136, Italy.

1



S

Expressions L

Aκ(S)Aκ(S)

EE

βi(E)
βjβi(E)

S

Ω

D

JeK−→
Ω

Jβi(e)KΩ

:= Bi(JeK−→Ω )

Expressions L

Aκ(S)Aκ(S)

EE

JEK−→
Ω

e

βi(e)

J·K−→
Ω

J·K−→
ΩΘ−1(·)

J·K−→
Ω

Bi

Figure S.1: Illustration of Step 1: Definition 5 and Remark 3 (Left) and Definition 6
(Right).

represents “α-order beliefs” (formally, see Remark 2 for the depth α of an expression)
inductively, one can construct the set of expressions L as L = Lκ, as in Remark 3.
Note that the left panel only depicts L0 = Aκ(S), L1, and L = Lα.

Once the expressions are defined, in each belief space
−→
Ω = 〈(Ω,D), (Bi)i∈I ,Θ〉,

Definition 6 identifies each expression e ∈ L with the corresponding event JeK−→
Ω
∈ D.

The right panel of Figure S.1 illustrates Definition 6. Starting from an expression
E ∈ Aκ(S) (in the dashed rectangle), JEK−→

Ω
:= Θ−1(E) ∈ D is an event (in the

bold rectangle) that corresponds to the event of nature E ∈ Aκ(S). If e ∈ L is an
expression and if JeK−→

Ω
∈ D is the corresponding event, then the expression βi(e) ∈ L

corresponds to the event Jβi(e)K−→Ω := Bi(JeK−→Ω ) ∈ D (in the bold rectangle).

The second step defines descriptions. For each belief space
−→
Ω , Definition 7 defines

the description D(ω) of each state ω ∈ Ω. As illustrated in the bold rectangle in the
left panel of Figure S.2, the collection of descriptions Ω∗, which is shown to be a set,
turns out to be the underlying state space of the terminal belief space. For any given

belief space
−→
Ω , the bold arrow depicts the description map D. It associates, with

each state ω ∈ Ω, the description D(ω) ∈ Ω∗.
Each description D(ω) consists of the unique nature state Θ(ω) ∈ S and the set
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Figure S.2: Illustration of Step 2 (Left) and Step 3 (Right).

of expressions that hold at ω (formally, {e ∈ L | ω ∈ JeK−→
Ω
}). Figure S.3 depicts

the subset of L = Lκ(Aκ(S)) associated with D(ω). The left-hand side depicts
the state space Ω and the state ω. The arrow from ω ∈ Ω to the shaded area,
which depicts D(ω), shows that D is a mapping (the description map). The set
D(ω) contains the expressions that hold at ω. As illustrated in the right-hand side
of the figure, an expression f satisfies f ∈ D(ω) iff (¬f) 6∈ D(ω). For instance,
the figure illustrates this fact for f ∈ {E, βi(E)} (also, since βjβi(E) 6∈ D(ω), it
follows that (¬βj)βi(E) ∈ D(ω)). In the state space Ω on the left-hand side, the
set JfK−→

Ω
of states at which an expression f holds is depicted as a circle, for each

f ∈ {E, βi(E), (¬βj)βi(E)}. The state ω is in the intersection of the circles, and thus
D(ω) contains the corresponding expressions. The figure also shows that one can
interpret D(ω) as the players’ belief hierarchies at ω (Remark 5).

The third step defines the domain D∗, which consists of the sets [e] for expressions
e. In the right panel of Figure S.2, the bold rectangle depicts the domain D∗. The
bold arrow from e ∈ L to [e] ∈ D∗ (also, the one from βi(e) ∈ L to [βi(e)] ∈ D∗)
depicts the definition. Lemma 1 shows that JeK−→

Ω
= D−1([e]) for each expression

e ∈ L. In the right panel of Figure S.2, the triangle connecting e ∈ L, [e] ∈ D∗, and
JeK−→

Ω
∈ D depicts Lemma 1.
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Figure S.3: Illustration of the Description D(ω) of ω (Step 2).

The fourth step defines Θ∗ : Ω∗ → S. The bold arrow from D(ω) ∈ Ω∗ to
Θ∗(D(ω)) ∈ S in the left panel of Figure S.4 illustrates the mapping Θ∗. The diagram
that connects ω, D(ω), and Θ(ω) = Θ∗(D(ω)) depicts the first part of Lemma 2.

The fifth step defines each player i’s belief operator B∗i : D∗ → D∗ by B∗i ([e]) :=
[βi(e)]. The bold arrow from [e] to B∗i ([e]) := [βi(e)] in the right panel of Figure S.4
illustrates the definition of B∗i in Lemma 3. The right panel also shows that, starting
from [e] ∈ D∗, one has D−1B∗i ([e]) = BiD

−1([e]). Thus, the quadrilateral connecting
[e], B∗i ([e]) := [βi(e)], Jβi(e)K−→Ω := Bi(JeK−→Ω ), and JeK−→

Ω
depicts the second part of

Lemma 3.
The sixth step shows that the description map D−→

Ω∗
on Ω∗ is the identity map

(Lemma 4). The bold arrow from ω∗ to itself in the left panel of Figure S.5 illustrates
the lemma. Recall from the discussion in Remark 6 in the main text that there exists
at most one morphism from a non-redundant belief space (recall also that a belief
space is non-redundant if its description map is injective). Thus, Lemma 4 implies

that the description map D−→
Ω

is the unique morphism from a given belief space
−→
Ω to

−→
Ω∗, establishing Theorem 1.

In sum, the right panel of Figure S.5 illustrates the role of the definitions and
lemmas in Section 3 in establishing Theorem 1 in a single panel.

C Section 4.2

As discussed in Section 4.2, I briefly and informally mention a possibility that one may
be able to analyze Bayesian equilibria of a fixed underlying game in a terminal belief
space (that depends on the fixed underlying game) by incorporating players’ strategy
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Figure S.4: Illustration of Step 4 (Left) and Step 5 (Right).

choices as a primitive of a belief space. Let (S,S) be a measurable parameter space of
payoff uncertainty. Let 〈(Ai,Ai)i∈I , (ui)i∈I〉 be an S-based game (i.e., an underlying
game): each (Ai,Ai) is a measurable space of player i’s actions; (A,A) is the product
measurable space of action profiles; and each ui : S × A → R is a bounded Borel-
measurable payoff function. Let “0” stand for nature.

A Bayesian game is a tuple
−→
Ω = 〈(Ω,D), (mi)i∈I ,Θ〉, which is a particular ℵ1-

belief space on S×A in the following sense. The set of states of the world (Ω,D) is a
product measurable space consisting of the parameter space (S,S) and each player’s
type set (Ti, Ti): Ω = S ×

∏
i∈I Ti and the domain D is the corresponding product

σ-algebra. Each player i ∈ I has a type mapping mi : Ω→ ∆(Ω), where ∆(Ω) is the
set of probability measures on (Ω,D). It associates, with each state of the world ω,
her belief mi(ω) ∈ ∆(Ω) held at ω with the requirement that the marginal of mi(ω)
on Ti is the Dirac measure concentrated at ωi ∈ Ti (i.e., each player is certain of her
own beliefs).1 The measurable function Θ : (Ω,D)→ (S × A,S × A) consists of the

1Two technical remarks are in order. First, the type mapping mi is required to be measurable
(see Section 5.1 for the σ-algebra on ∆(Ω) with respect to which mi is required to be measurable).
Second, Section 5.1 shows that the type mapping mi : Ω → ∆(Ω) is equivalently expressed as a
collection of (p-)belief operators (Bpi )p∈[0,1]. There exist a list of properties on Bpi under which Bpi
induces a type mapping mi; and mi, in turn, induces the original Bpi (see Definition 10). Technically,
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identity map Θ0 = idS : S → S and player i’s strategy Θi : (Ti, Ti) → (Ai,Ai).2
Thus, not only does Θ specify how each state of the world ω corresponds to the
corresponding payoff parameter s but also it specifies each player’s strategy Θi. Note
that strategies are restricted to measurable pure strategies.3

With some abuse of terminology, a Bayesian equilibrium is a particular Bayesian
game which respects the individual players’ incentive-compatibility condition: for all
i ∈ I, ω ∈ Ω, and ai ∈ Ai,∫

Ω

ui(Θ(ω̃))mi(ω)(dω̃) ≥
∫

Ω

ui(Θ0(ω̃), ai, (Θj(ω̃))j∈I\{i})mi(ω)(dω̃).

A morphism from one Bayesian game to another is a morphism in the category of
belief spaces on S ×A. Thus, it preserves the states of nature and, by definition, the

the list of properties (including the property that player i is certain of her own beliefs) are defined,
more generally, irrespective of whether an underlying state space admits a product structure.

2That is, for each ω = (ωi)i∈I∪{0}, Θ(ω) = (Θi(ωi))i∈I∪{0} ∈ S ×A.
3This is a restriction. While it is beyond the scope of this paper, see Friedenberg and Meier

(2017), Hellman (2014), and Simon (2003) for the non-existence of a measurable Bayesian (behavior-
strategy) equilibrium.

6



players’ beliefs and strategy choices (in contrast to the case in which the players’ strat-
egy choices are separated from the representation of their beliefs).4 If the underlying
S-based game has a measurable pure-strategy Bayesian equilibrium, I conjecture that
there exists a terminal Bayesian equilibrium in which, for any Bayesian equilibrium
〈(Ω,D), (mi)i∈I ,Θ〉 (i.e., for any representation 〈(Ω,D), (mi)i∈I ,Θ0〉 of the players’
interactive beliefs about the payoff parameters S and for any strategy choices of the
players (Θi)i∈I which constitute a Bayesian equilibrium), there is a unique morphism
that extends to the terminal belief space 〈(Ω∗,D∗), (m∗i )i∈I ,Θ∗〉 that consists of the
representation 〈(Ω∗,D∗), (m∗i )i∈I ,Θ∗0〉 of the players’ interactive beliefs about S and
the players’ strategy choices (Θ∗i )i∈I .

The space Ω∗ would consist of all possible belief hierarchies over S × A ranged
over all Bayesian equilibria. Thus, this terminal structure would be different from
the terminal belief space that consists of all possible belief hierarchies over S, i.e., the
terminal type space of Brandenburger and Dekel (1993), Heifetz and Samet (1998),
and Mertens and Zamir (1985). In particular, this terminal structure on S×A would
be redundant as a belief space on S. This terminal structure would also be different
from the terminal belief space on S × A in that Ω∗ would consists of those belief
hierarchies that correspond to some Bayesian equilibrium.

D Section 5

The framework of this paper applies to various forms of beliefs as long as play-
ers’ beliefs are represented by belief operators. Section 5 has established a terminal
probabilistic-belief space. Appendix D discusses further applications. Appendix D.1
discusses a terminal space for conditional probability systems (CPSs). Appendix D.2
introduces players’ knowledge and qualitative beliefs indexed by time. Appendix D.3
briefly discusses further possible applications, namely, terminal knowledge-unawareness,
preference, and expectation spaces.

D.1 Terminal Conditional-Belief Space

I construct a terminal space for conditional belief systems (CPSs) (Battigalli and
Siniscalchi, 1999; Guarino, 2017).5 While this subsection focuses on CPS-based con-
ditional beliefs, it suggests that a terminal conditional-belief space exists for a wide

4Following the terminology of Friedenberg and Meier (2017), the “extension property” is built
into the requirement of a morphism itself.

5As discussed in footnote 47 of the main text, a state space here is not restricted to a product
space. The framework here does not presuppose any topological restriction on nature states or any
cardinal restriction on conditioning events, either. Thus, the construction of the terminal conditional-
belief space would be complementary to Battigalli and Siniscalchi (1999) and Guarino (2017). For
instance, Di Tillio, Halpern, and Samet (2014) study conditional beliefs on a non-product space and
also provide game-theoretical applications to dynamic games.
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variety of qualitative or probabilistic beliefs, which can be used for epistemic analyses
of dynamic games including dynamic psychological games.

Call a triple (Ω,D, C) a conditional space if: (i) (Ω,D) is an ℵ1-algebra; (ii) C
is a non-empty sub-collection of D with ∅ 6∈ C; and (iii) there exists a conditional
probability system (CPS ) µ on (Ω,D, C). A function µ(·|·) : D × C → [0, 1] is a
CPS if: (i) each µ(·|C) is a countably-additive probability measure; (ii) Normality:
µ(C|C) = 1 for each C ∈ C; and (iii) Chain Rule: µ(E|C) = µ(E|D)µ(D|C) for any
E ∈ D and C,D ∈ C with E ⊆ D ⊆ C. Call each C ∈ C a conditioning event (or a
condition, for short). Fix a conditional space (S,Aℵ1(S), CS), where (S,S) is the set
of nature states and S ∈ CS.

Denote by ∆C(Ω) the set of CPSs on (Ω,D, C). I endow it with the ℵ1-algebra

DC∆ := Aℵ1({{µ ∈ ∆C(Ω) | µ(E|C) ≥ p} ∈ P(∆C(Ω)) | (E,C, p) ∈ D × C × [0, 1]}).

A player i’s conditional-type mapping is a measurable mapmi : (Ω,D)→ (∆C(Ω),DC∆).
I formulate a conditional-belief space using conditional p-belief operators Bp

i (·|C) for
each player i and each condition C, so that i’s conditional p-belief operators induce
her conditional-type mapping.

Definition S.1 (Conditional-Belief Space). A conditional-belief space of I on (S,S, CS)

is a tuple
−→
Ω := 〈(Ω,D, C), (Bp

i (·|C))(i,p,C)∈I×[0,1]×C,Θ〉 with the following properties.

1. (Ω,D, C) is a conditional space and Θ : (Ω,D) → (S,Aℵ1(S)) is a measurable
map with C = Θ−1(CS).

2. For each i ∈ I, player i’s conditional p-belief operators Bp
i (·|·) : D × C → D

satisfy the following.

(a) For each C ∈ C, (Bp
i (·|C))p∈[0,1] satisfies Definition 10 (2a)-(2h).

(b) Certainty-of-Conditional-Beliefs: If [mBi(ω)] ⊆ E then ω ∈ B1
i (E|Ω),

where

[mBi(ω)] := (
⋂

(E,p,C)∈D×[0,1]×C
ω∈Bpi (E|C)

Bp
i (E|C)) ∩ (

⋂
(E,p,C)∈D×[0,1]×C
ω∈(¬Bpi )(E|C)

(¬Bp
i )(E|C)).

(c) Normality: B1
i (C|C) = Ω for all C ∈ C.

(d) Chain Rule: Bp
i (E|D)∩Bq

i (D|C) ⊆ Bpq
i (E|C) for any E ∈ D and C,D ∈ C

with E ⊆ D ⊆ C.

By the assumption C = Θ−1(CS) in (1), denote Bp
i,CS

(·) := Bp
i (·|Θ−1(CS)) for each

(i, p, CS) ∈ I× [0, 1]×CS. This means that conditions in each conditional-belief space
are exogenously given as in Battigalli and Siniscalchi (1999) and Guarino (2017).
Thus, one’s conditional belief may fail to be a condition (i.e., Bp

i (E|C) 6∈ C). Also,
since S ∈ CS, “unconditional” beliefs Bp

i,S(·) = Bp
i (·|Ω) are also considered.
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Conditions (2) characterize each player’s conditional-type mapping as in Di Tillio,
Halpern, and Samet (2014, Theorem 1). First, by (2a), slightly abusing the notation,
a measurable map mBi : (Ω,D)→ (∆C(Ω),DC∆) is well-defined as in Section 5.1. For
conditional beliefs, Condition (2b) is the introspective property stating that player i
is certain of her own conditional beliefs. The set [mBi(ω)] satisfies [mBi(ω)] = {ω′ ∈
Ω | mBi(ω

′) = mBi(ω)}: it consists of states ω′ that player i cannot distinguish
from ω based on her conditional beliefs. That is, she unconditionally believes E with
probability one when [mBi(ω)] implies (i.e., is a subset of) E. Especially, Bp

i,CS
(E) ⊆

B1
i,SB

p
i,CS

(E) and (¬Bp
i,CS

)(E) ⊆ B1
i,S(¬Bp

i,CS
)(E) hold: if player i p-believes (does

not p-believe) E conditional on Θ−1(CS), then she unconditionally 1-believes that
she p-believes (does not p-believe) E conditional on Θ−1(CS).

By (2c), each mBi(ω)(·|·) satisfies Normality. Under (2a) and (2c), it can be seen
that (2d) characterizes the Chain Rule.

A (conditional-belief) morphism from
−→
Ω to

−→
Ω′ is a measurable map ϕ : (Ω,D)→

(Ω′,D′) satisfying: (i) Θ = Θ′ ◦ ϕ; and (ii) Bp
i,CS

(ϕ−1(·)) = ϕ−1(B′pi,CS(·)) for all

(i, p, CS) ∈ I × [0, 1]×CS. A conditional-belief space
−→
Ω∗ of I on (S,S, CS) is terminal

if, for any conditional-belief space
−→
Ω of I on (S,S, CS), there is a unique morphism ϕ :

−→
Ω →

−→
Ω∗. By considering the probabilistic-beliefs of each player for each conditioning

event, as in Section 5.1, Theorem 1 implies:

Corollary S.1 (Terminal Conditional-Belief Space). There exists a terminal conditional-

belief space
−→
Ω∗ of I on (S,S, CS).

Corollary S.1 establishes the existence of a terminal conditional belief space. I
briefly mention some related models of interest, namely, “lexicographic probability
systems (LPSs)” or “hypothetical reasoning.” For LPSs, Tsakas (2014) defines a
formal equivalence between conditional and lexicographic belief hierarchies in respec-
tive type spaces (under some topological assumptions on nature states and beliefs),
and establishes the existence of a terminal lexicographic-belief space from a terminal
conditional-belief space.6 Brandenburger, Friedenberg, and Keisler (2008) provide an
epistemic characterization of iterated admissibility (avoidance of weak dominance)
using a belief-complete type space (recall footnote 40 in the main text for belief-
completeness) in which each type is associated with an LPS. For hypothetical rea-
soning, Di Tillio, Halpern, and Samet (2014), for instance, discuss the connection of
conditional beliefs with hypothetical knowledge and counterfactual reasoning.

While detailed discussions on models of counterfactual reasoning are beyond the
scope of this paper, Arieli and Aumann (2015) study a logical system where each
player has a probability-one belief operator (thus, the notion of belief is rather qual-
itative) and show that an outcome of a perfect-information game where each player
moves just once is consistent with rationality and common strong belief in rationality

6Technically, the notion of terminality in his paper is slightly weaker than the one adopted in
this paper, namely, “ℵ1-terminality” in Section 7.4.
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iff it is a backward induction outcome. Roughly, a player strongly believes a state-
ment if she believes it unless it is logically inconsistent with her node being reached.7

The reason that Arieli and Aumann (2015) use the syntactic approach is that the for-
malization of the concept of strong belief calls for the operation that refers to a valid
expression: in the semantic framework, an expression is valid (in all belief spaces)
iff it corresponds to the entire state space in every belief space (recall Definition 8).
Since an expression is valid in the terminal space iff it is valid in all belief spaces
(recall Proposition 2), the analysis of this paper would show that Arieli and Aumann
(2015)’s epistemic characterization of backward induction outcomes for their class of
perfect-information games would be possible within the semantic framework, namely,
in the terminal space.

D.2 Terminal Dynamic Knowledge-Belief Space

Epistemic analyses of dynamic games may call for players’ knowledge and beliefs.8 As
in Battigalli and Bonanno (1997), I consider players’ knowledge and beliefs indexed
by time. While a knowledge operator Ki,t : D → D represents player i’s knowledge
at time t ∈ N, a belief operator Bi,t : D → D does her qualitative belief at time t.

Definition S.2 (Dynamic Knowledge-Belief Space). A dynamic κ-knowledge-belief

space of I on (S,S) is a tuple
−→
Ω := 〈(Ω,D), (Ki,t, Bi,t)(i,t)∈I×N,Θ〉 with the following

properties.

1. (Ω,D) is a κ-algebra and the map Θ : (Ω,D)→ (S,Aκ(S)) is measurable.

2. Knowledge operators Ki,t : D → D satisfy Truth Axiom, (Positive Intro-
spection,) Negative Introspection, and the Kripke property. Belief operators
Bi,t : D → D satisfy Consistency, Positive Introspection, Negative Introspec-
tion, and the Kripke property.

3. Knowledge and belief operators jointly satisfy: (i) Ki,t(·) ⊆ Bi,t(·); (ii) Bi,t(·) ⊆
Ki,tBi,t(·); and (iii) Bi,t(·) = Bi,tBi,t+1(·).

In Condition (2), for ease of illustration, I have assumed (i) both knowledge and
belief are fully introspective, (ii) knowledge is truthful while belief is consistent, and
(iii) both knowledge and belief are represented by a possibility correspondence.

In Condition (3), the first condition means that knowledge implies belief at each
time. The second states that each player knows her own belief at each time. Note that

7Note that Battigalli and Siniscalchi (2002) provide the notion of strong belief and an epistemic
characterization of extensive-form rationalizability (and sufficient epistemic conditions for a back-
ward induction outcome) using a belief-complete conditional type space.

8For instance, one may analyze players’ knowledge about their past-observed moves and their
beliefs about past-unobserved and future moves in an extensive-form game (e.g., Battigalli and
Bonanno, 1997).
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(¬Bi,t)(·) ⊆ Ki,t(¬Bi,t)(·) follows from Truth Axiom and Negative Introspection of
knowledge. The third captures the idea of belief persistence (Battigalli and Bonanno,
1997): player i believes E at time t iff she believes at t that she (will) believe E at
t + 1. Player i’s knowledge satisfies perfect recall if Ki,t(·) ⊆ Ki,t+1(·) for all t ∈ N.
A dynamic knowledge-belief space with perfect recall is a dynamic knowledge-belief
space such that each player’s knowledge satisfies perfect recall.

A dynamic knowledge-belief space is mathematically a belief space of I×N×{0, 1},
where “player (i, t, 0)’s belief operator” is Ki,t while “player (i, t, 1)’s belief operator”
is Bi,t, with the specified conditions. Thus:

Corollary S.2 (Terminal Dynamic Knowledge-Belief Space). There exists a terminal

dynamic κ-knowledge-belief space (with/without perfect recall)
−→
Ω∗ of I on (S,S).

D.3 Futher Possible Extensions

This subsection briefly discusses three possible extensions: a terminal knowledge-
unawareness space, a terminal preference space, and a terminal expectation space.

D.3.1 Terminal Knowledge-Unawareness Space

A knowledge-unawareness space is a tuple
−→
Ω := 〈(Ω,D), (Ki, Ui)i∈I ,Θ〉 where Ki :

D → D is player i’s knowledge operator and Ui : D → D is i’s unawareness operator.

By Theorem 1, a terminal knowledge-unawareness space
−→
Ω∗ := 〈(Ω∗,D∗), (K∗i , U∗i )i∈I ,Θ

∗〉
exists under various assumptions on properties of knowledge and unawareness.

Call a knowledge-unawareness space
−→
Ω non-trivial if Ui(JeK−→Ω ) 6= ∅ for some (i, e) ∈

I×L. That is, some player i is unaware of some JeK−→
Ω

at some state. Then, there exists
a non-trivial knowledge-unawareness space within a given category of knowledge-

unawareness spaces iff the terminal knowledge-unawareness space
−→
Ω∗ is non-trivial:

U∗i ([e]) 6= ∅ for some (i, e) ∈ I × L.
Since the literature on unawareness has demonstrated some limitation of possibil-

ity correspondence models on standard state spaces (e.g., Chen, Ely, and Luo, 2012;
Dekel, Lipman, and Rustichini, 1998; Fukuda, 2021; Modica and Rustichini, 1994),
an interesting research avenue is to extend the construction of a terminal knowledge-
unawareness space to a generalized state space consisting of multiple state spaces as
in Heifetz, Meier, and Schipper (2006, 2008). The key insight of the specification of a
domain (i.e., the collection of events) on a knowledge-unawareness space carries over
to the generalized state space model.

Specifically, while the framework of this paper requires the domain D to be a
κ-algebra of sets, the domain in the generalized state space has a more general lattice

structure. A (generalized) knowledge-unawareness space would refer to a tuple
−→
Ω :=

〈(Ω,D), (Ki, Ui)i∈I ,Θ〉 with the following properties: Ω =
⋃
α∈A Ωα is a state space

that consists of multiple subspaces (Ωα)α∈A; D forms a κ-complete lattice; Ki, Ui :
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D → D are player i’s knowledge and unawareness operators; and Θ : Ω → S is a
map that associates, with each state of the world, the corresponding nature state. I
conjecture that the idea of this paper can be applied to knowledge and unawareness
operators on a κ-complete lattice.9

D.3.2 Terminal Preference Space

A preference space refers to a model in which players reason about their interactive
preferences instead of beliefs (e.g., Chen, 2010; Di Tillio, 2008; Epstein and Wang,
1996; Ganguli, Hiefetz, and Lee, 2016). In a preference space 〈(Ω,D), (mi)i∈I ,Θ〉,
each player i’s preference-type mapping mi associates, with each state of the world
ω ∈ Ω, her preference relation over the set of acts (i.e., bounded measurable functions)
on Ω, where Ω is endowed with a κ-algebra. This contrasts with a belief space
〈(Ω,D), (mBi)i∈I ,Θ〉, where each player i’s type mapping mBi associates, with each
state of the world ω ∈ Ω, her belief over the set of events. Call a preference space a
κ-preference space if it is defined on a κ-algebra.

On the one hand, the framework of this paper may not directly apply to the exis-
tence of a terminal preference space, as its construction would call for the hierarchical
construction (directly constructing a set of hierarchies of preferences) as opposed to
the belief-operator construction of this paper.10

On the other hand, the analyses of this paper suggest two points on the existence
and structure of a terminal preference space.11 First, a terminal κ-preference space
would exist, irrespective of such property of preferences as “continuity,” if one con-
siders preference hierarchies up to the ordinal level κ. For example, Di Tillio (2008)
constructs a terminal ℵ0-preference space consisting of finite preference hierarchies
in the category of ℵ0-preference-type spaces. I conjecture that, in the context of Di
Tillio (2008) in which players’ preference relations are merely complete and transitive,
a terminal ℵ1-preference space would also exist if each preference hierarchy consists
of all countable-level interactive preferences.

9In fact, this conjecture is consistent with the construction of a canonical knowledge-unawareness
space by Heifetz, Meier, and Schipper (2008) based on a finitely language. As this paper shows that
Aumann (1976)’s canonical knowledge space (which is constructed based on a finitely language) can
be taken as a terminal ℵ0-knowledge space, the canonical space of Heifetz, Meier, and Schipper
(2008) could be taken as a terminal ℵ0-knowledge-unawareness space within the (new) class of
knowledge-unawareness spaces defined on an ℵ0-complete lattice.

10In fact, the aforementioned papers directly construct a terminal preference space as the space
of preference hierarchies.

11The conjectures are partly based on the fact that one can construct a terminal qualitative-
belief space as a space of qualitative-belief hierarchies. In the context of κ-belief spaces, an earlier
version of this paper (Fukuda, 2017, Sections 5 and 6) (i) provides a type-space reformulation of a
κ-qualitative-belief (especially, κ-knowledge) space, where the type mapping of a player associates,
with each state, a binary belief (that assigns either 0 or 1 to each event) instead of a probability
measure (that assigns p ∈ [0, 1] to each event); and (ii) constructs a terminal κ-qualitative-belief
(especially κ-knowledge) space consisting of qualitative-belief hierarchies of depth up to κ. Such
terminal κ-qualitative-belief space exists regardless of properties of beliefs.
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Second, under a regularity condition under which players’ finite-level reasoning
extends to countable levels, a terminal ℵ1-preference space would consist of finite-
level preference hierarchies in the category of ℵ1-preference spaces.12 As examples,
in Epstein and Wang (1996), preferences satisfy some continuity properties (their
P3 and P4). In Ganguli, Hiefetz, and Lee (2016), preferences are represented by a
countable collection of continuous real-valued functionals over acts.

Moreover, in terms of game-theoretic applications, suppose that one would like to
use a preference space to study implications of common belief in rationality, where
beliefs and rationality are induced from preferences. Especially, for each event E ∈ D,
player i believes E in the sense of Savage-null: she believes E if her preferences never
depend on any outcomes that happen when the event E does not occur.13 The
resulting belief is qualitative belief for which Section 6 of the main text establishes
the epistemic characterization for iterative elimination of strictly dominated actions as
common belief in rationality. It is an interesting avenue for future research to identify
properties of preferences and the corresponding properties of qualitative belief.

Instead, the rest of this subsection shows that a terminal expectation space exists.
At each state of the world, each player has her (numerical) expectation of an act (or
a random variable, i.e., a bounded measurable function).

D.3.3 Terminal Expectation Space

I construct a terminal expectation space where players interactively reason about their
expectations of random variables by formalizing the correspondence between beliefs
and expectations. While I focus on expectations that come from countably-additive
beliefs, a terminal expectation space would exist for weaker notions of expectations
when the objects of reasoning (e.g., a class of random variables) and the properties
of expectations (i.e., additivity or continuity) are modified.14

To define the objects of players’ expectations (i.e., random variables), denote
by B(Ω) the set of bounded Borel measurable functions f : Ω → R on a measurable
space (Ω,D). Next, I define the properties of expectations (that come from countably-
additive beliefs). Define the space Γ(Ω) of expectations on a measurable space (Ω,D)
as the subset of the space RB(Ω) of the mappings from B(Ω) into R respecting the
following five properties of expectations. Namely, any J ∈ Γ(Ω) satisfies: (a. Non-
negativity) f(·) ≥ 0 implies J [f ] ≥ 0; (b. Additivity) J [f + g] = J [f ] + J [g];

12For the case of probabilistic beliefs, Proposition 4 in Section 5.1 corresponds to this assertion.
13Morris (1996, 1997) studies qualitative belief and knowledge from preferences. Brandenburger,

Friedenberg, and Keisler (2008) provide a preference foundation for the notion of assumption in their
lexicographic-probability-system framework. Trost (2013) studies an epistemic characterization of
iterated elimination of inferior action profiles (see Appendix E.3) in preference spaces.

14The construction here solves an open question raised by Golub and Morris (2017, Section 3) on
the construction of a terminal expectation space. Corollary S.3 constructs a terminal expectation
space by transforming a terminal probabilistic-belief space into the terminal expectation space.
Footnote 32 in Appendix G.1 also shows how one can explicitly construct a terminal expectation
space by paralleling the construction of a terminal probabilistic-belief space in the literature.
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(c. Homogeneity) J [cf ] = cJ [f ] for all c ∈ R; (d. Constancy) J [IΩ] = 1; and (e.
Continuity) fn ↑ f (in B(Ω)) implies J [fn] ↑ J [f ]. Next, let DΓ be the ℵ1-algebra on
Γ(Ω) generated by {{J ∈ Γ(Ω) | J(f) ≥ r} ∈ P(Γ(Ω)) | (f, r) ∈ B(Ω)× R}.

An expectation space (of I on (S,S)) is a tuple
−→
Ω := 〈(Ω,D), (Ei)i∈I ,Θ〉 with

the following properties: (i) (Ω,D) is a measurable space of states of the world; (ii)
Θ : (Ω,D)→ (S,Aℵ1(S)) is a measurable map that associates, with each state of the
world, the corresponding nature state; and (iii) each Ei is player i’s expectation-type
mapping Ei : (Ω,D) → (Γ(Ω),DΓ) satisfying the introspective property (certainty
of expectation) below. For each ω ∈ Ω, define the set of states [Ei(ω)] := {ω̃ ∈
Ω | Ei(ω̃) = Ei(ω)} at which player i cannot distinguish from ω based on her own
expectations. Then, assume that each player i is certain of her expectation: for any
(ω,E) ∈ Ω×D, [Ei(ω)] ⊆ E implies Ei(ω)[IE] = 1.

I discuss two ways in which an expectation space unpacks players’ higher-order
expectations. The first is analogous to a type mapping in a probabilistic-belief space
as in the above definition. Player i’s expectation-type mapping Ei associates, with
each state ω ∈ Ω, the functional Ei(ω) that maps each random variable f to the
player’s expectation of f at ω.

In contrast, the second views the expectation-type mapping as a mapping that
associates, with each random variable f , another random variable Ei[f ] that rep-
resents the player’s expectation of the random variable at each state. Hence, by
iterating players’ expectations Ei, one can represent higher-order expectations such
as j’s expectation of i’s expectation of a random variable f by EjEi[f ].

Formally, Ei : B(Ω) → B(Ω) associates, with each bounded Borel measurable
function f , another bounded Borel measurable function Ei(·)[f ] that represents the
player i’s expectation of f at each state. Denote by Ei[f | ω] = Ei(ω)[f ]. The five
properties on the expectation-type mapping Ei are: (a. Non-negativity) f(·) ≥ 0
implies Ei[f | ·] ≥ 0; (b. Additivity) Ei[f + g] = Ei[f ] + Ei[g]; (c. Homogeneity)
Ei[cf ] = cEi[f ] for all c ∈ R; (d. Constancy) Ei[IΩ] = IΩ; and (e. Continuity) fn ↑ f
(in B(Ω)) implies Ei[fn] ↑ Ei[f ].

To see interactive reasoning over random variables on (S,Aℵ1(S)), for any f ∈
B(S), denote fΘ = f ◦ Θ ∈ B(Ω). Player i’s expectation of f on the state space
(Ω,D) is Ei[fΘ] ∈ B(Ω). Thus, one can analyze players’ higher-order expectations by
iterating their expectation-type mappings. For example, player i’s expectation of j’s
expectation of f ∈ B(S) is a bounded Borel measurable function EiEj[fΘ] ∈ B(Ω).

Next, I also remark that if player i is certain of her expectations then her expec-
tations satisfy the law of iterated expectations. Again, denoting Ei[f | ω] = Ei(ω)[f ],
it can be seen that Ei[Ei[f | ω̃] | ω] = Ei[f | ω] for all (ω, f) ∈ Ω× B(Ω).

An (expectation) morphism ϕ between expectation spaces
−→
Ω and

−→
Ω′ is a measur-

able map ϕ : (Ω,D) → (Ω′,D′) with the following two properties: (i) Θ = Θ′ ◦ ϕ;
and (ii) Ei(ω)[f ′ ◦ ϕ] = E′i(ϕ(ω))[f ′] for all (ω, f ′) ∈ Ω × B(Ω′). Call a morphism
ϕ an (expectation) isomorphism if ϕ is bijective and its inverse ϕ−1 is a morphism.
The class of expectation spaces forms a category, where each object is an expectation
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space and each arrow is an expectation morphism.

An expectation space
−→
Ω∗ (of I on (S,S)) is terminal (among the class of expecta-

tion spaces of I on (S,S)) if, for any expectation space
−→
Ω (of I on (S,S)), there is

a unique morphism ϕ from
−→
Ω into

−→
Ω∗. A terminal expectation space is unique up to

isomorphism. Then:

Corollary S.3 (Terminal Expectation Space). There exists a terminal expectation

space
−→
Ω∗ of I on (S,S).

To construct a terminal expectation space, the proof in Appendix G.1 formulates
the equivalence between expectation spaces and probabilistic-belief spaces that comes
from the one-to-one correspondence between beliefs and expectations. Especially, the
terminal expectation space is constructed from a terminal probabilistic-belief space.

I briefly remark on expectations that come from finitely-additive or non-additive
beliefs. When players possess expectations that come from finitely-additive or non-
additive beliefs on a κ-algebra, they interactively reason about their expectations
of bounded measurable functions f : (Ω,D) → (R,Aκ({[a, b) | a < b})), and their
expectation-type mappings would satisfy the appropriate properties of the expecta-
tion functional.

Next, I remark on the average expectation operator E : (Ω,D) → (Γ(Ω),DΓ),
which associates, with each state ω, the weighted average of the players’ expectations
(for simplicity, I focus on symmetric weights on players).15 Consider the following
two typical cases of a set I of players. The first case is when the set of players is finite:
I = {1, . . . , n}. Then, define E(ω)[f ] := 1

n

∑n
i=1 Ei(ω)[f ] for each (ω, f) ∈ Ω× B(Ω).

The second case is when I = [0, 1]. Assume that, for each (ω, f) ∈ Ω × B(Ω), the
mapping I 3 i 7→ Ei(ω)[f ] ∈ R is Borel-measurable (by construction, it is bounded:
supi∈I |Ei(ω)[f ]| ≤ supω̃∈Ω |f(ω̃)| < ∞). Hence, the following mapping E : Ω ×
B(Ω)→ R is well-defined: E(ω)[f ] :=

∫
I
Ei(ω)[f ]di for each (ω, f) ∈ Ω×B(Ω). It can

be seen that E : (Ω,D)→ (Γ(Ω),DΓ) is measurable. Especially, each agent can reason
about the average expectations, because E maps f ∈ B(Ω) to E[f ] ∈ B(Ω). Since
the mapping I 3 i 7→ E∗i (ω∗)[f ] ∈ R is Borel-measurable and bounded, the average
expectation operator E∗ : (Ω∗,D∗) → (Γ(Ω∗),D∗Γ) is well-defined in the terminal
space.

E Section 6

Appendix E supplements Section 6. Appendix E.1 provides another example of a
strategic game in which a unique prediction under IESDA is obtained by an arbitrarily
long elimination process. Appendix E.2 provides an example of a strategic game in

15See Golub and Morris (2017) and the references therein for applications of average expectations
to such literature as network games.
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which a unique prediction under IEBDA is obtained by an arbitrarily long elimination
process. Appendix E.3 studies common knowledge of weak-dominance rationality
instead of common belief in weak-dominance rationality.16 Appendix E.4 studies an
epistemic characterization of a (pure-strategy) Nash equilibrium for any strategic
game with ordinal payoffs. Appendix E.5 focuses on probabilistic beliefs by studying
correlated equilibria.

E.1 Another Example of a Game with a Transfinite Process
of IESDA

I provide an example of a strategic game with finite action sets in which a unique pre-
diction under IESDA involves an arbitrarily long process because there are infinitely
many players.17

Let α be a non-zero limit ordinal. I define a strategic game 〈(Ai)i∈I , (ui)i∈I〉 (in
terms of payoff functions) as follows. First, let I := α+1 (i.e., I = {0, 1, . . . , α}). For
instance, when α is the smallest infinite ordinal (i.e., the set of non-negative integers),
the set of players can be identified with {0, 1, 2, . . . }∪{i∗} with 0 < 1 < 2 < · · · < i∗.18

Second, each player i’s action set is Ai := {x, y}. Third, for player 0 ∈ I, her
payoff is

u0(a) :=

{
0 if a0 = x

1 if a0 = y
.

For any other player i ∈ I \ {0}, her payoff from taking ai = y is always 1 and her
payoff from taking ai = x is

ui(x, a−i) :=

{
2 if aj = x for some j < i

0 if aj = y for all j < i
.

That is, for each player i, taking ai = y always yields a payoff of 1; in contrast, taking
ai = x yields a payoff of 2 if some predecessor j < i takes action x and otherwise it
yields a payoff of 0. For player 0, taking a0 = 0 thus always yields a payoff of 0.

For this game, the unique prediction under IESDA is the singleton set AIESDA =
{(y)i∈I} in which every player’s action is y. In the original game, the unique strictly
dominated action is a0 = x. Once a0 = x is eliminated, the unique strictly dominated
action is a1 = x. At the (n + 1)-th step of elimination, an = x is the unique strictly

16Other possible applications for strategic games with qualitative beliefs are solution concepts
by Guarino and Ziegler (2022) under which players follow maxmin (pessimism) or maxmax (opti-
mism) decision criteria. For optimism (maxmax criteria), they study the role of Truth Axiom. For
pessimism (maxmin criteria), they propose a new rationalizability solution concept which they call
Wald rationalizability and compare it with Börgers rationalizability.

17This example is inspired by Dufwenberg and Stegeman (2002, Example 6).
18In fact, for any set I, by the Axiom of Choice, one can introduce a well-ordering on I so that I

is order-isomorphic to some ordinal α. Then, add i∗ to the set I as the largest element.
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0 1 2 3 4 · · · · · · · · · α
0 0 0 0 0 0 · · · · · · · · · 0
1 1 0 0 0 0 · · · · · · · · · 0
2 1 1 0 0 0 · · · · · · · · · 0
3 1 1 1 0 0 · · · · · · · · · 0
4 1 1 1 1 0 · · · · · · · · · 0
...

...
...

...
...

... · · · · · · · · · ...
...

...
...

...
...

... · · · · · · · · · ...
α 0 0 0 0 0 · · · · · · · · · 1

Table S.1: Player i’s payoff ui(ai, a−i) as a function of ai (Row) and a−i (Column).

dominated action and thus is eliminated. At the $-th step (where $ denotes the
least infinite ordinal), an = x has been eliminated for all n ∈ $. At the ($ + 1)-th
step, a$ = x is eliminated (in the special case in which α = $, ai∗ = x is eliminated).
In this way, ai = x is eliminated for all i ∈ I.

E.2 An Example of a Game with a Transfinite Process of
IEBA

Similarly to the case of IESDA, I provide an example of a strategic game in which a
unique prediction under IEBA is obtained after arbitrarily long iterations.

Let α be a non-zero limit ordinal. Define a strategic game 〈(Ai)i∈I , (ui)i∈I〉 (for
ease of exposition, in terms of payoff functions) as follows. Let Ai := α + 1 (i.e.,
Ai = {0, 1, . . . , α}) be the set of actions available to i ∈ I := {1, 2}. Define i’s payoff
function ui : Ai × A−i → R as

ui(ai, a−i) :=

{
0 if (ai ≤ a−i and ai < α) or ai = α > a−i

1 if a−i < ai < α or ai = a−i = α
.

Table S.1 depicts ui(ai, a−i) as a function of ai (row) and a−i (column). Action α
yields a payoff of 1 if the opponent’s action is also α, and it yields a payoff of 0
otherwise. Any other action ai yields a payoff of 1 is it is larger than the opponent’s
action a−i, and it yields a payoff of 0 otherwise. The process of eliminating all B-
dominated actions at each step leads to the unique prediction (α, α) after the α round
of elimination.19

19Two remarks are in order. First, since IEBA is order-independent, any process of IEBA yields
a unique action profile (a1, a2) = (α, α). Second, it can be seen that no action is strictly dominated
in the original game, and thus AIESDA = A.
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E.3 Iterated Elimination of Inferior Action Profiles

I study a pure-strategy version of the iterated elimination procedure of “inferior”
action profiles first introduced by Stalnaker (1994) and further studied, among others,
by Bonanno (2008), Bonanno and Tsakas (2018), and Hillas and Samet (2020). An
epistemic characterization of this solution concept calls for common knowledge of
weak-dominance rationality instead of common belief in weak-dominance rationality.
First, the following defines the notion of an inferior action profile.

Definition S.3 (Inferior Action Profiles). Let 〈(Ai)i∈I , (<i)i∈I〉 be a strategic game.
Let X be a subset of the action profiles A (X may not necessarily have a product
structure). An action profile x ∈ X is inferior relative to X if there exist a player
i ∈ I and an action ai ∈ Ai of player i (with ai not necessarily belonging to the
projection of X into Ai) with the following two properties: (i) (ai, x−i) �i (xi, x−i);
and (ii) (ai, a−i) <i (xi, a−i) for any a−i ∈ A−i with (xi, a−i) ∈ X.

The following defines the iterated elimination procedure of inferior action profiles.

Definition S.4 (IEIP). A process of iterated elimination of inferior action profiles
(IEIP) is an ordinal sequence of Aα (with |α| ≤ |A|) defined as follows: (i) A0 = A;
(ii) for a successor ordinal α = β + 1, Aα is obtained by eliminating at least one
inferior action profile a ∈ Aβ relative to Aβ; and (iii) for a non-zero limit ordinal α,
Aα =

⋂
β<αA

β. Since (Aα)α is weakly decreasing, take the smallest ordinal α (with

|α| ≤ |A|) with Aα = Aα+1. An action profile a ∈ A survives the process of IEIP if
a ∈ AIEIP := Aα. Call AIEIP the terminal set of the process of IEIP.

A process of IEIP is order-independent, i.e., the terminal set AIEIP is uniquely
determined. The proof of this result is a minor modification to Hillas and Samet
(2020, Proposition 1).

The following proposition demonstrates that the solution concepts of IEIP and
IEBA shed light on the difference between knowledge and belief. Common knowl-
edge of weak-dominance rationality characterizes IEIP, while common belief in weak-
dominance rationality characterizes IEBA. Bonanno and Tsakas (2018) and Hillas and
Samet (2020), among others, provide the epistemic characterization of IEIP as an im-
plication of common knowledge of weak-dominance rationality when every player’s
belief (in fact, knowledge) operator satisfies Truth Axiom and the Kripke property.20

Technically, the following extends the epistemic characterization of IEIP by Bonanno
and Tsakas (2018) and Hillas and Samet (2020) (for a finite strategic game) to any
strategic game.

Proposition S.1 (IEIP). Fix a strategic game and κ > max(|I|, |A|).

1. Take any κ-knowledge space
−→
Ω in which each Bi satisfies the Kripke property

and Truth Axiom and in which each player is certain of (in fact, knows) her

20Note that Truth Axiom implies Consistency.
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own strategy: Θ−1
i ({ai}) ⊆ Bi(Θ

−1
i ({ai})).21 If ω ∈ C(WDRATI) then Θ(ω) ∈

AIEIP.

2. For any a ∈ AIEIP, there exist a κ-knowledge space
−→
Ω and a state ω ∈ Ω such

that: each Bi satisfies the Kripke property and Truth Axiom; each player is cer-
tain of (in fact, knows) her own strategy; Θ(ω) = a; and that ω ∈ C(WDRATI).

The proof of Proposition S.1 is similar to that of Bonanno and Tsakas (2018,
Proposition 1) or Hillas and Samet (2020, Theorem 1). Thus it is omitted.22

Three remarks are in order. First, since one can prove Proposition S.1 (2) by
constructing a partitional possibility correspondence model, Proposition S.1 holds
with or without Positive Introspection and Negative Introspection, as long as Truth
Axiom and the Kripke property are imposed.

Second, the above observation implies AIEIP ⊆ AIEBA. For any a ∈ AIEIP, there
exist a partitional model and its state ω with a = Θ(ω) and ω ∈ C(WDRATI). Then,
a = Θ(ω) ∈ AIEBA. The converse set inclusion may not necessarily hold, because the
epistemic characterization of IEBA may call for the failure of Truth Axiom.

Third, for the epistemic characterization of IEIP, Truth Axiom may be necessary.
In fact, Bonanno (2008) provides a game and a belief space (see his Figures 6 and
7) such that the players have common belief in weak-dominance rationality and the
resulting action profile does not survive any process of IEIP.23

Proposition S.1 is restated as:

Corollary S.4 (IEIP on the Terminal Space). Fix any strategic game and κ >

max(|I|, |A|). There exists a terminal κ-knowledge space
−→
Ω∗ in which each Bi sat-

isfies the Kripke property and Truth Axiom and in which every player is certain of
(in fact, knows) her own strategy. Then,

AIEIP = {a ∈ A | a = Θ∗(ω∗) for some ω∗ ∈ C∗(WDRATI)}.

The first part of the corollary is an implication of Theorem 1. The second part
is equivalent to the following: for any ω∗ ∈ C∗(WDRATI), Θ∗(ω∗) ∈ AIEIP; and
conversely, for any action profile a ∈ AIEIP, there exists ω∗ ∈ C∗(WDRATI) such
that a = Θ∗(ω∗). In words, an action profile a survives a process of IEIP iff a is
played at some state in the terminal knowledge space at which the players commonly
know their weak-dominance rationality.

21I simply denote by Bi player i’s belief operator that satisfies Truth Axiom (i.e., knowledge
operator).

22For the first part, one needs to extend the induction proof of Bonanno and Tsakas (2018,
Proposition 1) or Hillas and Samet (2020, Theorem 1) to transfinite induction. The second part of
the proof is basically identical to that of Bonanno and Tsakas (2018, Proposition 1) or Hillas and
Samet (2020, Theorem 1).

23Moreover, in his example, common belief satisfies Truth Axiom because some player’s belief
satisfies Truth Axiom.
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E.4 Pure-Strategy Nash Equilibria

It is well-known that if every player is rational and is certain of all the players’ strategy
choices then the resulting play constitutes a Nash equilibrium play (e.g., Aumann and
Brandenburger, 1995). This subsection extends this epistemic characterization to an
arbitrary strategic game with ordinal payoffs in a class of belief spaces in which each
player’s belief operator satisfies the Kripke property.

For a given strategic game 〈(Ai)i∈I , (<i)i∈I〉, denote by ANash the set of Nash
equilibria:

ANash := {a ∈ A | for all i ∈ I, (ai, a−i) <i (a′i, a−i) for all a′i ∈ Ai}.

As in Section 6.3, for any belief space
−→
Ω , let RATi be the set of states at which player

i is rational:

RATi := {ω ∈ Ω | ω ∈ Bi(Jai �i Θi(ω)K−→
Ω

) for no ai ∈ Ai}.

Note that, in order to define RATi (precisely, in order for Jai �i Θi(ω)K−→
Ω

to be

an event), the given κ-belief space
−→
Ω is assumed to satisfy κ > max(|A|, |I|) as in

Section 6.2. Let RATI :=
⋂
i∈I RATi. Let STRi be the set of states at which player

i is certain of the players’ strategies:

STRi := {ω ∈ Ω | Θ−1({Θ(ω)}) ⊆ Bi(Θ
−1({Θ(ω)}))}.

Let STRI :=
⋂
i∈I STRi. The next proposition shows that rationality and certainty

of the players’ strategies characterize Nash equilibrium plays.

Proposition S.2 (Nash Equilibria). Fix any strategic game and κ > max(|I|, |A|).

1. Let 〈(Ω,D), (Bi)i∈I ,Θ〉 be a κ-belief space such that each Bi satisfies the Kripke
property. Then, ω ∈ RATI ∩ STRI implies Θ(ω) ∈ ANash.

2. For any a ∈ ANash, there exist a κ-belief space 〈(Ω,D), (Bi)i∈I ,Θ〉 and ω ∈ Ω
such that: each Bi satisfies the Kripke property; ω ∈ RATI ∩ STRI ; and that
a = Θ(ω).

Two remarks are in order. First, one can show ANash ⊆ AIESDA using the epistemic
characterizations. For any a ∈ ANash, the proof of Proposition S.2 (2) constructs a

belief space
−→
Ω in which ω ∈ Ω = RATI∩STRI , a = Θ(ω), and each Bi satisfies Truth

Axiom. Then, by Proposition 5 (1), ω ∈ C(RATI) ⊆ RATI and a = Θ(ω) ∈ AIESDA.
In Proposition S.2, the players have to possess the logical ability in the sense

that their belief operators have to satisfy the Kripke property. For instance, one can
construct a belief space in which the players cooperate in the prisoners’ dilemma game
even though they are rational and are certain of their strategies due to the failure of
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Necessitation (e.g., they fail to believe, at some state, a tautology that cooperation
is strictly dominated. At that state, taking cooperation is rational).24

Proposition S.2 is re-stated as:

Corollary S.5 (Nash Equilibria on the Terminal Space). Fix any strategic game and

κ > max(|I|, |A|). There exists a terminal κ-belief space
−→
Ω∗ in which each Bi satisfies

the Kripke property. Then,

ANash = {a ∈ A | a = Θ∗(ω∗) for some ω∗ ∈ RATI ∩ STRI}.

E.5 Correlated Equilibria

Here, I discuss the role of the existence and structure of a terminal probabilistic-belief
space on the solution concept of correlated equilibria. Section E.5.1 introduces, to
a belief space, the players’ common prior in addition to their posteriors (i.e., type
mappings). It shows that a terminal space exists among such a class of belief spaces.
Section E.5.2 shows that a correlated equilibrium is mapped to a subspace of the
terminal probabilistic-belief space with a common prior if the correlated equilibrium
as a belief space is non-redundant and minimal. Section E.5.3 then shows that, in
particular, a correlated equilibrium in which the players are Bayes rational at every
state (and thus they commonly believe Bayes rationality) can also be mapped to a
subspace of the terminal probabilistic-belief space with a common prior and Bayes
rationality under non-redundancy and minimality.

Thus, as Aumann (1987) argues, it is possible to take the underlying state space
of the correlated equilibrium (in which the players are Bayes rational) as expressing
the players’ actions, their beliefs about their actions, their beliefs about their beliefs
about their actions, and so on.

This subsection demonstrates the flexibility of the methodology of this paper. One
can consider a certain class of belief spaces and then establish a terminal belief space
among it (e.g., the class of belief spaces that admit a common prior and the class
of correlated equilibria as belief spaces).25 The existence of a terminal correlated
equilibrium suggests that the underlying states in a correlated equilibrium can be
replaced with the players’ belief hierarchies about their play if the correlated equilib-
rium is non-redundant and minimal. Section E.5.4 briefly discusses the literature on
the “intrinsic” view of correlation in games.

24For the prisoners’ dilemma, denote Ai = {c, d} and (d, c) �i (c, c) �i (d, d) �i (c, d) for each
i ∈ I = {1, 2}. Consider the following belief space: (Ω,D) = ({ω1, ω2, ω3},P(Ω)); Bi(E) = E for
any E 6= Ω and Bi(Ω) = {ω1, ω2}; and (Θi(ω`))`∈{1,2,3} = (c, d, c). At ω3, each player does not
believe a tautology. It can be seen that RATi = {ω2, ω3} and STRi = Ω. Then, Θ(ω3) = (c, c),
which is not a Nash equilibrium.

25One can also establish a terminal space among a class of knowledge-belief spaces, e.g., a class
of knowledge-belief spaces that admit a common prior or a class of knowledge-belief spaces in which
knowledge is induced by a possibility correspondence. For the space consideration, I focus on
probabilistic beliefs alone.
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E.5.1 Terminal Belief Space with a Common Prior

I introduce probabilistic-belief spaces with a common prior, and show that a terminal
space exists. A probabilistic-belief space of I on (S,S) with a common prior is a

tuple
−→
Ω := 〈(Ω,D), (Bp

i )(i,p)∈I×[0,1],Θ, µ〉 such that: (i) 〈(Ω,D), (Bp
i )(i,p)∈I×[0,1],Θ〉 is

a probabilistic-belief space in the sense of Definition 10; and that (ii) µ is a (countably-
additive) probability measure, called the common prior, satisfying

µ(E) =

∫
Ω

mBi(ω)(E)µ(dω) for each (i, E) ∈ I ×D. (S.1)

Equation (S.1) says the prior probability of E is equal to the expectation of the
posterior probabilities mBi(ω)(E) with respect to µ (e.g., Mertens and Zamir, 1985).26

For probabilistic-belief spaces with a common prior
−→
Ω and

−→
Ω′, ϕ :

−→
Ω →

−→
Ω′ is a

(probabilistic-belief) morphism if ϕ is a morphism between probabilistic-belief spaces
(i.e., Θ = Θ′ ◦ ϕ and Bp

i ϕ
−1 = ϕ−1B′pi ) and µ′ = µ ◦ ϕ−1.27 The last condition states

that the prior probabilities are preserved. A probabilistic-belief space
−→
Ω∗ of I on

(S,S) with a common prior is terminal if, for any probabilistic-belief space
−→
Ω of I on

(S,S) with a common prior, there is a unique morphism ϕ :
−→
Ω →

−→
Ω∗. As in Section

5.1:

Corollary S.6 (Terminal Probabilistic-Belief Space with a Common Prior). There

exists a terminal probabilistic-belief space
−→
Ω∗ of I on (S,S) with a common prior.

In the proof, I introduce a hypothetical player so that, in each probabilistic-belief
space with a common prior, the beliefs of the hypothetical player are given by the
common prior. Following the construction of a terminal space in Sections 3 and 5.1,
one can introduce the beliefs of the hypothetical player on the candidate terminal
space. Since it induces a common prior, the candidate space is indeed terminal.

E.5.2 Correlated Equilibrium and Belief Hierarchies

I introduce correlated equilibria. Since a correlated equilibrium is a particular belief
space, I show that it is mapped to a subspace of the terminal probabilistic-belief space

26In a probabilistic-belief space with a common prior
−→
Ω , Aumann (1976)’s Agreement theorem

holds. If µ(Cp(
⋂
i∈I{ω ∈ Ω | mBi

(ω)(E) = ri})) > 0, then |ri−rj | ≤ 1−p for all i, j ∈ I: if the event
that it is common p-belief that each player i’s belief in E is ri has positive probability according to
the common prior, then the difference between any two players’ beliefs is at most 1−p (see footnote
51 of the main text for common p-belief). See Fukuda (2019) for the Agreement theorem on an
arbitrary measurable space.

27Let
−→
Ω be a probabilistic-belief space with a common prior, and let ϕ : 〈(Ω,D), (Bi)i∈I ,Θ〉 →

〈(Ω′,D′), (B′i)i∈I ,Θ′〉 be a morphism in the sense of Section 5.1. Letting
−→
Ω′ with µ′ := µ ◦ ϕ−1,

−→
Ω′

is a probabilistic-belief space with a common prior and ϕ :
−→
Ω →

−→
Ω′ is a morphism.
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with a common prior. That is, the underlying state space of a correlated equilibrium
can be replaced with the set of belief hierarchies that the state space induces.

To define a correlated equilibrium, let 〈(Ai)i∈I , (ui)i∈I〉 be an underlying strategic
game with the following properties. The set Ai of i’s actions is endowed with a σ-
algebra Si containing singletons: {ai} ∈ Si for all ai ∈ Ai.28 Let the action profiles
A :=

∏
i∈I Ai be endowed with the product σ-algebra S. For ease of exposition,

let ui : A → R be i’s bounded Borel measurable payoff function. Any measurable
function Θ : (Ω,D) → (A,S) can be decomposed into Θ = (Θi)i∈I such that each
Θi : (Ω,D)→ (Ai,Si) is measurable.

A correlated equilibrium is an ℵ1-belief space
−→
Ω := 〈(Ω,D), (Bp

i )(i,p)∈I×[0,1],Θ, µ〉
with a common prior satisfying the following two properties. The first is the certainty
of actions: Θ−1

i ({ai}) ⊆ B1
i (Θ

−1
i ({ai})) for each ai ∈ Ai. Whenever player i takes

action ai, she believes with probability one that she takes ai. The second is the
(ex-ante) optimality condition. For any player i and for any measurable function
τi : (Ω,D)→ (Ai,Si) with τ−1

i ({ai}) ⊆ B1
i (τ
−1
i ({ai})) for each ai ∈ Ai,∫

Ω

ui(Θi(ω),Θ−i(ω))µ(dω) ≥
∫

Ω

ui(τi(ω),Θ−i(ω))µ(dω).

For ease of exposition, I have defined a correlated equilibrium in terms of probability-
one beliefs instead of knowledge induced by a partition or a σ-algebra. When each
player’s knowledge is induced by her partition, her type mapping (equivalently, her
p-belief operators) is given as the Bayes conditional probability measure from the
common prior conditional on the partition. Thus, instead of specifying the players’
partitions, I specify their p-belief operators (equivalently, their type mappings). As
discussed in footnote 25 in this subsection, one can establish a terminal correlated
equilibrium with knowledge.

Next, I identify the set of belief hierarchies induced by some state of some cor-
related equilibrium. That is, I construct a terminal correlated equilibrium, i.e., a
terminal ℵ1-belief space with a common prior satisfying the two requirements to

be a correlated equilibrium:
−→
Ω∗ = 〈(Ω∗,D∗), (B∗pi )(i,p)∈I×[0,1],Θ

∗, µ∗〉 such that, for

any correlated equilibrium
−→
Ω = 〈(Ω,D), (Bp

i )(i,p)∈I×[0,1],Θ, µ〉, there is a unique mor-

phism D :
−→
Ω →

−→
Ω∗. Indeed, as long as the underlying game admits a correlated

equilibrium (e.g., when the underlying game is finite), the terminal correlated equi-
librium exists, because the candidate terminal ℵ1-belief space with a common prior−→
Ω∗ (constructed as in Sections 3 and 5.1) satisfies the two conditions to be a cor-
related equilibrium: (i) (Θ∗i )

−1({ai}) ⊆ B∗1i ((Θ∗i )
−1({ai})) for each ai ∈ Ai; and

(ii) for any player i and for any measurable function τ ∗i : (Ω∗,D∗) → (Ai,Si) with

28If the players reason only about whether each player takes each action, then the σ-algebra Si
is the one generated by the singleton actions. Generally, the action set Ai may have a natural
measurable structure (e.g., the Borel σ-algebra) Si containing each singleton action.
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(τ ∗i )−1({ai}) ⊆ B∗1i ((τ ∗i )−1({ai})) for each ai ∈ Ai,∫
Ω∗
ui(Θ

∗
i (ω

∗),Θ∗−i(ω
∗))µ∗(dω∗) ≥

∫
Ω∗
ui(τ

∗
i (ω∗),Θ∗−i(ω

∗))µ∗(dω∗).

Each state of the terminal correlated equilibrium is associated with some corre-
lated equilibrium distribution. For instance, take two correlated equilibria with differ-
ent correlated equilibrium distributions and a state from each equilibrium. Then, the
two states are mapped to different states in the terminal space, as different correlated
equilibrium distributions induce different belief hierarchies about play.

I remark on two implications. First, whenever there exists a correlated equilibrium
(and thus the terminal correlated equilibrium exists), any non-redundant and minimal

correlated equilibrium
−→
Ω can be embedded into the subspace

−−−→
D(Ω) of the terminal

space.29 Put differently, the correlating device (i.e., the state space) of any non-

redundant and minimal correlated equilibrium
−→
Ω can be replicated by the space

−−−→
D(Ω)

of belief hierarchies: the correlated equilibria
−→
Ω and

−−−→
D(Ω) are isomorphic as a belief

space (i.e., the players’ beliefs and strategies and the common prior are preserved), and
consequently induce the same correlated equilibrium distribution µ◦Θ−1 = µ∗◦(Θ∗)−1.

Second, an action profile a ∈ A is played under some correlated equilibrium, that
is,

a = Θ(ω) for some state ω ∈ Ω in some correlated equilibrium
−→
Ω ,

if and only if it is played under the terminal correlated equilibrium
−→
Ω∗:

a = Θ∗(ω∗) for some state ω∗ ∈ Ω∗.

In the special case in which the set A of action profiles is finite, denote by ACE

the set of action profiles played with positive probability under some correlated equi-
librium:

ACE := {a ∈ A | µ(Θ−1({a})) > 0 for some correlated equilibrium
−→
Ω}.

Then, ACE is the set of action profiles played with positive probability under the

terminal correlated equilibrium
−→
Ω∗:

ACE = {a ∈ A | µ∗((Θ∗)−1({a})) > 0}.

E.5.3 Correlated Equilibria and Bayes Rationality

A similar analysis carries over to a belief space in which the players commonly believe
Bayes rationality (Aumann, 1987).30 A belief space with common belief in Bayes

29Note that
−−−→
D(Ω) is a belief space defined on the image D(Ω) of Ω under the description map D.

As discussed at the end of Section 3, one can introduce a belief structure on D(Ω).
30The similar analysis also holds for a refinement of a subjective correlated equilibrium called an

a-posteriori equilibrium (Aumann, 1974; Brandenburger and Dekel, 1987).
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rationality is an ℵ1-belief space
−→
Ω := 〈(Ω,D), (Bp

i )(i,p)∈I×[0,1],Θ, µ〉 with a common
prior satisfying the following two properties. The first is the certainty of actions:
Θ−1
i ({ai}) ⊆ B1

i (Θ
−1
i ({ai})) for each ai ∈ Ai. The second is Bayes rationality (at

every state): for all ω ∈ Ω and for all ai ∈ Ai,∫
Ω

ui(Θi(ω̃),Θ−i(ω̃))mBi(ω)(dω̃) ≥
∫

Ω

ui(ai,Θ−i(ω̃))mBi(ω)(dω̃).

The players are Bayes rational at every state, and thus they commonly believe (at
every state) that they are Bayes rational. It can be seen that a belief space with
common belief in Bayes rationality is a correlated equilibrium.

Especially, whenever there exists a belief space with common belief in Bayes ra-
tionality, the class of belief spaces with common belief in Bayes rationality admits
a terminal space. Now, the correlating device (i.e., the state space) of any non-

redundant and minimal belief space with common belief in Bayes rationality
−→
Ω can

be replicated by the space
−−−→
D(Ω) of belief hierarchies.

Thus, as Aumann (1987) argues, one can take the underlying state space of the
correlated equilibrium (where the players are Bayes rational) as expressing the players’
actions and belief hierarchies about their actions.

E.5.4 Intrinsic Correlation

The analysis in this subsection shows that any non-redundant and minimal correlated
equilibrium is embedded into a subspace of the terminal correlated equilibrium, which
consists of the players’ belief hierarchies about play. Broadly, the analysis is somewhat
related to an intrinsic view of correlation in non-cooperative games (Brandenburger
and Friedenberg, 2008; Du, 2012). Brandenburger and Friedenberg (2008) formulate
an intrinsic view of correlation in non-cooperative games, under which players’ cor-
related assessments of their strategy choices come from their correlated assessments
about their belief hierarchies (about their strategy choices). This is in contrast to
the extrinsic view of correlation as external payoff-irrelevant signals (Aumann, 1974).
While the analysis of intrinsic correlation is beyond the scope of this paper, I briefly
discuss the literature.

The two aforementioned ingenious papers show that a certain correlated rational-
izable (or correlated equilibrium) play cannot be played under intrinsic correlation.
In contrast, Appendix E.5 asks a related but different question. Specifically, Bran-
denburger and Friedenberg (2008) study a refinement of correlated (and also inde-
pendent) rationalizability by imposing epistemic assumptions on players’ (i) beliefs
about their belief hierarchies and (ii) rationality (and common belief in rationality)
in a type space, and study the given strategic game as originally. In contrast, the
analysis here takes an extended game (the given strategic game augmented with a
correlation device—recall that a correlated equilibrium is a Nash equilibrium of the
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extended game), and asks when the correlation device (in a correlated equilibrium)
can be replaced with belief hierarchies about play.

Du (2012) characterizes a refinement of correlated equilibria in which each player’s
strategy in a type space is constant whenever types induce the same belief hierarchy
about play. In contrast, this paper asks when the correlation device (the underlying
state space) can be replaced with belief hierarchies without imposing the condition
that each player’s strategy is determined by her belief hierarchy alone.

F Section 7: Minimality

As discussed in the main text, a belief space is minimal (or strongly measurable) if
the domain D consists solely of events that are generated by nature states and belief
hierarchies. Proposition S.3 below characterizes minimality as in Friedenberg and
Meier (2011, Theorem 5.1).

Recalling Remark 6 and its discussions, any belief morphism ϕ preserves descrip-
tions: the states ω and ϕ(ω) induce the same nature state and players’ belief hierar-
chies, i.e., D−→

Ω
(ω) = D−→

Ω′
(ϕ(ω)). By following the insightful notion of Friedenberg and

Meier (2011), Proposition S.3 instead directly considers a map ϕ with the property
that the description of (i.e., the nature state and players’ belief hierarchies at) a state
ω is associated with the description of ϕ(ω): D−→

Ω
= D−→

Ω′
◦ ϕ. Friedenberg and Meier

(2011) call such ϕ a hierarchy morphism, as the analysts often directly work with a
mapping that preserves players’ belief hierarchies rather than with a belief morphism.

Roughly, the proposition below states that
−→
Ω′ is minimal iff a hierarchy morphism ϕ

is a belief morphism. Thus, this section shows that the insight of Friedenberg and
Meier (2011) carries over to qualitative belief.

Proposition S.3 (Minimality). Fix a category of κ-belief spaces of I on (S,S).

1. Let
−→
Ω be a belief space, and let

−→
Ω′ be a minimal belief space. A measurable

map ϕ : (Ω,D)→ (Ω′,D′) is a belief morphism iff the map ϕ : Ω→ Ω′ satisfies
D−→

Ω
= D−→

Ω′
◦ ϕ.

2. Let a belief space
−→
Ω′ be such that, for any belief space

−→
Ω , a measurable map

ϕ : (Ω,D) → (Ω′,D′) is a belief morphism iff the map ϕ : Ω → Ω′ satisfies

D−→
Ω

= D−→
Ω′
◦ ϕ. Then,

−→
Ω′ is minimal.

To shed more light on conditions under which a hierarchy morphism ϕ is a belief
morphism, I introduce the following two definitions that generalize the notion of non-
redundancy. First, following Friedenberg and Meier (2011, Definition 7.2), a κ-belief

space
−→
Ω of I on (S,S) is measurably non-redundant if, for any (ω,E) ∈ Ω×D,

either D−1
−→
Ω

({D−→
Ω

(ω)}) ⊆ E or D−1
−→
Ω

({D−→
Ω

(ω)}) ∩ E = ∅.
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A belief space is measurably non-redundant if two states which induce the same
description (i.e., players’ belief hierarchies) cannot be separated by events in D. If

the belief space
−→
Ω is non-redundant (i.e., D−→

Ω
is injective), then it is measurably

non-redundant.
Second, following Brandenburger and Friedenberg (2008, Definition 8.2) and Frieden-

berg and Meier (2011, Definition 7.2), a κ-belief space
−→
Ω of I on (S,S) is bimeasurable

if the description map D−→
Ω

: (Ω,D)→ (Ω∗,D∗) satisfies

D−→
Ω

(E) ∈ D∗ for all E ∈ D

in addition to the measurability condition of D−→
Ω

(i.e., D−1
−→
Ω

([e]) ∈ D for all [e] ∈ D∗).
This condition generalizes non-redundancy under topological assumptions.31 With
these two definitions in mind, the following remark provides a sufficient condition for
minimality (Friedenberg and Meier, 2011, Lemma 7.1):

Remark S.1 (Sufficient Conidtion for Minimality). 1. A minimal κ-belief space
is measurably non-redundant.

2. A measurably non-redundant and bimeasurable κ-belief space is minimal.

Proposition S.3 and Remark S.1 imply the following (Friedenberg and Meier, 2011,

part of Corollary 7.2). Let
−→
Ω and

−→
Ω′ be a κ-belief space in a given category. Under

one of the following conditions, a measurable map ϕ : (Ω,D) → (Ω′,D′) is a belief
morphism iff the map ϕ : Ω → Ω′ satisfies D−→

Ω
= D−→

Ω′
◦ ϕ (i.e., ϕ is a hierarchy

morphism).

1. Proposition S.3 (1):
−→
Ω′ is minimal.

2. Remark S.1 (2):
−→
Ω′ is measurably non-redundant and bimeasurable.

G Proofs

G.1 Appendix D

Proof of Corollary S.1. Construct Ω∗ as in the proof of Theorem 1, by viewing the set
of players in each conditional-belief space as I := I× [0, 1]×CS. To see that Ω∗ is not
empty, take a CPS µ on (S,Aℵ1(S), CS). Consider 〈(S,Aℵ1(S), CS), (Bp

i,C)(i,p,C)∈I , idS〉,
where (i) Bp

i,C(E) := ∅ if µ(E|C) < p; and (ii) Bp
i,C(E) := S if µ(E|C) ≥ p.

31For the expert reader: In the context of type spaces in which players’ probabilistic beliefs are
countably additive, if the set of states of nature (S,S) has a suitable topological structure, then
any belief-closed subspace of a terminal type space is bimeasurable. Consistently with Remark S.1
below, any non-redundant type space is minimal and thus can be identified with a belief-closed
subspace of the terminal type space (Mertens and Zamir, 1985).
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A (Probabilistic-)Belief Space
Ω := 〈(Ω,D), (mEi)i∈I ,Θ〉

A Terminal Belief Space
Ω∗ := 〈(Ω∗,D∗), (m∗i )i∈I ,Θ∗〉

A Unique (Probabilistic-)

Belief Morphism D

An Expectation Space
−→
Ω := 〈(Ω,D), (Ei)i∈I ,Θ〉

A Terminal Expectation Space
−→
Ω∗ := 〈(Ω∗,D∗), (Em∗i )i∈I ,Θ

∗〉
A Unique Expectation

Morphism D

Figure S.6: The Third Step of the Proof of Corollary S.3

Next, as in the proof of Theorem 1, define D∗, Θ∗, and an auxiliary collection
of p-belief operators (B∗pi,CS)(i,p,CS)∈I as B∗pi,CS([e]) := [βpi,CS(e)] for each [e] ∈ D∗. By

construction, D−1(B∗pi,CS([e])) = Bp
i,CS

(D−1[e]). Since (Θ∗)−1(CS) = [CS] ∈ D∗, let
C∗ := {[CS] ∈ D∗ | CS ∈ Aℵ1(S)}. By construction, C∗ ⊆ D∗, (Θ∗)−1(CS) = C∗,
and ∅ 6∈ C∗ (this is because Θ∗ is surjective). Then, (Ω∗,D∗, C∗) is a conditional
space, and (B∗pi,CS)(i,p,CS)∈I is a well-defined collection of p-belief operators (observe

B∗pi (·|[CS]) = B∗pi,CS). As in the proof of Corollary 2, the p-belief operators satisfy

the specified properties, i.e.,
−→
Ω∗ := 〈(Ω∗,D∗, C∗), (B∗pi (·|[CS]))(i,p,[CS ])∈I×[0,1]×C∗ ,Θ

∗〉 is

a conditional-belief space. By construction,
−→
Ω∗ is terminal.

Proof of Corollary S.3. The proof consists of three steps. The first step shows that
any expectation space induces the corresponding (probabilistic-)belief space and that
any belief space induces the corresponding expectation space. The second step shows
that any expectation morphism induces the corresponding (probabilistic-)belief mor-
phism and that any belief morphism induces the corresponding expectation morphism.
These two steps establish the equivalence between an expectation space and a belief
space. The third step then shows that the expectation space induced by a terminal
belief space is a terminal expectation space. Figure S.6 illustrates the third step.

Step 1. The first step establishes the correspondence between expectation and belief
spaces. For ease of notation, throughout the proof, I formulate any probabilistic-
belief space using type mappings (recall the discussion after Definition 10 in the
main text). First, let 〈(Ω,D), (Ei)i∈I ,Θ〉 be an expectation space. I define the cor-
responding probabilistic-belief space 〈(Ω,D), (mEi)i∈I ,Θ〉: define a measurable map
mEi : (Ω,D)→ (∆(Ω),D∆) by mEi(ω)(E) := Ei(ω)[IE].

Conversely, let 〈(Ω,D), (mi)i∈I ,Θ〉 be a belief space. I define the correspond-
ing expectation space 〈(Ω,D), (Emi)i∈I ,Θ〉. For any f ∈ B(Ω), define Emi(ω)[f ] :=∫

Ω
f(ω̃)mi(ω)(dω̃) for each ω ∈ Ω. It can be seen that Emi : B(Ω) → B(Ω) is a

well-defined map satisfying Non-negativity, Additivity, Homogeneity, Constancy, and
Continuity. Moreover, mi = mEmi and Ei = EmEi

for every i ∈ I.32

32One can formalize this equivalence using category theory (namely, functors ∆ and Γ are isomor-
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Step 2. The second step establishes the correspondence between expectation and

belief morphisms. Let ϕ :
−→
Ω →

−→
Ω′ be an expectation morphism. Thus, Ei(ω)[f ′◦ϕ] =

E′i(ϕ(ω))[f ′] for any f ′ ∈ B(Ω′). Take IE′ with E ′ ∈ D. Then, mEi(ω)(ϕ−1(E ′)) =
m′E′i

(ϕ(ω))(E ′) for each (ω,E ′) ∈ Ω×D′. Since this condition is equivalent to the one

in terms of p-belief operators, the measurable map ϕ : (Ω,D) → (Ω′,D′) is a belief
morphism ϕ : 〈(Ω,D), (mEi)i∈I ,Θ〉 → 〈(Ω′,D′), (m′E′i)i∈I ,Θ

′〉.
Conversely, let ϕ : Ω → Ω′ be a belief morphism (to distinguish expectation and

belief spaces, I use the underline to indicate a belief space). For any E ′ ∈ D′,

Emi(ω)[IE′ ◦ ϕ] = Emi(ω)[Iϕ−1(E′)] = mi(ω)(ϕ−1(E ′)) = m′i(ϕ(ω))(E ′) = E′m′i [IE′ ].

Using the properties of an expectation type-mapping, Emi(ω)[f ′ ◦ϕ] = E′m′i(ϕ(ω))[f ′]

for all f ′ ∈ B(Ω′). In other words, the measurable map ϕ : (Ω,D) → (Ω′,D′) is an
expectation morphism ϕ : 〈(Ω,D), (Emi)i∈I ,Θ〉 → 〈(Ω′,D′), (E′m′i)i∈I ,Θ

′〉.

Step 3. The third step shows that the expectation space
−→
Ω∗ := 〈(Ω∗,D∗), (Em∗i )i∈I ,Θ

∗〉
induced by a terminal probabilistic belief space Ω∗ := 〈(Ω∗,D∗), (m∗i )i∈I ,Θ∗〉 is a
terminal expectation space.

Take any expectation space
−→
Ω . Consider a corresponding belief space Ω :=

〈(Ω,D), (mEi)i∈I ,Θ〉. Since Ω∗ is terminal, there is a (unique) belief morphism D :

Ω→ Ω∗. By Step 2, the measurable mapping D is an expectation morphism
−→
Ω into−→

Ω∗. To show that the mapping D is unique, let ϕ :
−→
Ω →

−→
Ω∗ be an expectation

morphism. By Step 2, ϕ : Ω→ Ω∗ is a belief morphism. Since Ω∗ is a terminal belief
space, it follows that ϕ = D. Figure S.6 illustrates Step 3.

G.2 Appendix E

Proof of Proposition S.2. 1. It suffices to show that, for each i ∈ I,

(Θ(ω)) <i (ai,Θ−i(ω)) for all ai ∈ Ai.

Suppose to the contrary that there exist i ∈ I and ai ∈ Ai such that

(Θ(ω)) 6<i (ai,Θ−i(ω)), i.e., (ai,Θ−i(ω)) �i (Θ(ω)).

Since ω ∈ STRi and Bi satisfies the Kripke property, Θ(ω) = Θ(ω̃) for all
ω̃ ∈ bBi(ω). Thus, bBi(ω) ⊆ Jai �i Θi(ω)K−→

Ω
, i.e., ω ∈ Bi(Jai �i Θi(ω)K−→

Ω
),

which contradicts ω ∈ RATi.

phic). Hence, one could also construct a terminal expectation space by replacing ∆ with Γ in such
constructions of a terminal probabilistic type space as Brandenburger and Dekel (1993), Heifetz and
Samet (1998, Section 5), and Mertens and Zamir (1985).
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2. Take a ∈ ANash. Let (Ω,D) = ({a},P({a})), Θ = id{a}, and Bi = idD for each
i ∈ I. By construction, each Bi satisfies the Kripke property, RATi = STRi =
{a}, and Θ(a) = a.

Proof of Corollary S.6. The proof consists of two steps. The first step introduces a

hypothetical player “0” to each probabilistic-belief space
−→
Ω with a common prior so

that it can be identified as a probabilistic belief space 〈(Ω,D), (Bp
i )(i,p)∈(I∪{0})×[0,1],Θ〉

satisfying Expression (S.1). Namely, define Bp
0 as follows: Bp

0(E) = Ω if µ(E) ≥ p;
and Bp

0(E) = ∅ if µ(E) < p. Hence, player 0 has a state-independent type mapping

mB0(ω)(·) = µ(·) for all ω ∈ Ω. For any spaces
−→
Ω and

−→
Ω′, Bp

0ϕ
−1 = ϕ−1B′p0 is

equivalent to µ ◦ ϕ−1 = µ′.
The second step constructs a terminal space. Following the construction in Section

3, the p-belief operators (B∗p0 )p∈[0,1] satisfy D−1B∗p0 ([e]) = Bp
0D
−1([e]) for all [e] ∈ D∗.

Define µ∗ : D∗ → [0, 1] by µ∗([e]) := sup{p ∈ [0, 1] | Ω∗ = B∗p0 ([e])} for each
[e] ∈ D∗. Since the p-belief operators (B∗p0 )p∈[0,1] satisfy the properties in Definition
10 (2), µ∗ is a countably-additive probability measure. Also, µ∗ = µ ◦ D−1 follows
from D−1B∗p0 (·) = Bp

0D
−1(·). Thus, µ∗ satisfies Equation (S.1) (see footnote 27 in

Appendix E.5.2).

G.3 Appendix F

Proof of Proposition S.3. For both parts, by Remark 6, a belief morphism ϕ :
−→
Ω →−→

Ω′ satisfies D−→
Ω

= D−→
Ω′
◦ϕ. For Part (1), it suffices to show the “if” part. First, I show

that ϕ : (Ω,D) → (Ω′,D′) is measurable. Since D−→
Ω

= D−→
Ω′
◦ ϕ, D−1

−→
Ω

= ϕ−1 ◦ D−1
−→
Ω′

.

Since
−→
Ω′ is minimal, D−1

−→
Ω′

(D∗) = D′. For any E ′ ∈ D′, there is [e] ∈ D∗ with

E ′ = D−1
−→
Ω′

([e]). Then, ϕ−1(E ′) = ϕ−1(D−1
−→
Ω′

([e])) = D−1
−→
Ω

([e]) ∈ D. Second, Θ = Θ′ ◦ ϕ
follows from D−→

Ω
= D−→

Ω′
◦ϕ. Third, I show Bi(ϕ

−1(·)) = ϕ−1(B′i(·)). For any E ′ ∈ D′,
take [e] ∈ D∗ with E ′ = D−1

−→
Ω′

([e]). Then, Bi(ϕ
−1(E ′)) = BiD

−1
−→
Ω

([e]) = D−1
−→
Ω
B∗i ([e]) =

ϕ−1D−1
−→
Ω′

(B∗i ([e]) = ϕ−1B′iD
−1
−→
Ω′

([e]) = ϕ−1B′i(E
′).

For Part (2), suppose that
−→
Ω′ is not minimal. By Remark 7,

−→
Ω′κ is minimal and

idΩ′ satisfies D−→
Ω′

= D−→
Ω′κ
◦ idΩ′ . However, idΩ′ : (Ω′,D′κ)→ (Ω′,D′) is not measurable

because D′κ ( D′, and hence it is not a belief morphism.

Proof of Remark S.1. 1. Take (ω,E) ∈ Ω×D. Suppose D−1
−→
Ω

({D−→
Ω

(ω)}) ∩ E 6= ∅.
Since

−→
Ω is minimal, there exists [e] ∈ D∗ such that E = D−1

−→
Ω

([e]). Thus, there

is ω̃ ∈ D−1
−→
Ω

({D−→
Ω

(ω)}) ∩ E = D−1
−→
Ω

({D−→
Ω

(ω)}) ∩ D−1
−→
Ω

([e]), and hence D−→
Ω

(ω̃) =

D−→
Ω

(ω) ∈ [e]. Now, I show D−1
−→
Ω

({D−→
Ω

(ω)}) ⊆ E. If ω̂ ∈ D−1
−→
Ω

({D−→
Ω

(ω)}) then

D−→
Ω

(ω̂) = D−→
Ω

(ω) ∈ [e] and thus ω̂ ∈ D−1
−→
Ω

([e]) = E.
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2. Since D−→
Ω

is measurable, D−1
−→
Ω

(D∗) ⊆ D. Conversely, take E ∈ D. It suffices

to show E ∈ D−1
−→
Ω

(D∗). Since D−→
Ω

is bimeasurable, D−→
Ω

(E) = [e] for some

[e] ∈ D∗. Operating D−1
−→
Ω

, I have D−1
−→
Ω

(D−→
Ω

(E)) = D−1
−→
Ω

([e]). Thus, to show

E ∈ D−1
−→
Ω

(D∗), it suffices to show E = D−1
−→
Ω

(D−→
Ω

(E)). Now, E ⊆ D−1
−→
Ω

(D−→
Ω

(E))

follows from the definition of the inverse map D−1
−→
Ω

. If ω ∈ D−1
−→
Ω

(D−→
Ω

(E)) then

there is ω̃ ∈ D−1
−→
Ω

({D−→
Ω

(ω)}) ∩ E. Since
−→
Ω is measurably non-redundant, ω ∈

D−1
−→
Ω

({D−→
Ω

(ω)}) ⊆ E.

References for the Supplementary Appendix

[1] I. Arieli and R. J. Aumann. “The Logic of Backward Induction”. J. Econ. Theory 159 (2015),
443–464.

[2] R. J. Aumann. “Subjectivity and Correlation in Randomized Strategies”. J. Math. Econ. 1
(1974), 67–96.

[3] R. J. Aumann. “Agreeing to Disagree”. Ann. Statist. 4 (1976), 1236–1239.

[4] R. J. Aumann. “Correlated Equilibrium as an Expression of Bayesian Rationality”. Econo-
metrica 55 (1987), 1–18.

[5] R. J. Aumann and A. Brandenburger. “Epistemic Conditions for Nash Equilibrium”. Econo-
metrica 63 (1995), 1161–1180.

[6] P. Battigalli and G. Bonanno. “The Logic of Belief Persistence”. Econ. Philos. 13 (1997),
39–59.

[7] P. Battigalli and M. Siniscalchi. “Hierarchies of Conditional Beliefs and Interactive Episte-
mology in Dynamic Games”. J. Econ. Theory 88 (1999), 188–230.

[8] P. Battigalli and M. Siniscalchi. “Strong Belief and Forward Induction Reasoning”. J. Econ.
Theory 106 (2002), 356–391.

[9] G. Bonanno. “A Syntactic Approach to Rationality in Games with Ordinal Payoffs”. Logic
and the Foundations of Game and Decision Theory (LOFT 7). Ed. by G. Bonanno, W. van
der Hoek, and M. Wooldridge. Amsterdam University Press, 2008, 59–86.

[10] G. Bonanno and E. Tsakas. “Common Belief of Weak-dominance Rationality in Strategic-form
Games: A Qualitative Analysis”. Games Econ. Behav. 112 (2018), 231–241.

[11] A. Brandenburger and E. Dekel. “Rationalizability and Correlated Equilibria”. Econometrica
55 (1987), 1391–1402.

[12] A. Brandenburger and E. Dekel. “Hierarchies of Beliefs and Common Knowledge”. J. Econ.
Theory 59 (1993), 189–198.

[13] A. Brandenburger and A. Friedenberg. “Intrinsic Correlation in Games”. J. Econ. Theory
141 (2008), 28–67.

[14] A. Brandenburger, A. Friedenberg, and H. J. Keisler. “Admissibility in Games”. Econometrica
76 (2008), 307–352.

[15] Y.-C. Chen. “Universality of the Epstein-Wang Type Structure”. Games Econ. Behav. 68
(2010), 389–402.

31



[16] Y.-C. Chen, J. C. Ely, and X. Luo. “Note on Unawareness: Negative Introspection versus AU
Introspection (and KU Introspection)”. Int. J. Game Theory 41 (2012), 325–329.

[17] E. Dekel, B. L. Lipman, and A. Rustichini. “Standard State-Space Models Preclude Unaware-
ness”. Econometrica 66 (1998), 159–173.

[18] A. Di Tillio. “Subjective Expected Utility in Games”. Theor. Econ. 3 (2008), 287–323.

[19] A. Di Tillio, J. Halpern, and D. Samet. “Conditional Belief Types”. Games Econ. Behav. 87
(2014), 253–268.

[20] S. Du. “Correlated Equilibrium and Higher Order Beliefs about Play”. Games Econ. Behav.
76 (2012), 74–87.

[21] M. Dufwenberg and M. Stegeman. “Existence and Uniqueness of Maximal Reductions under
Iterated Strict Dominance”. Econometrica 70 (2002), 2007–2023.

[22] L. G. Epstein and T. Wang. ““Beliefs about Beliefs” without Probabilities”. Econometrica
64 (1996), 1343–1373.

[23] A. Friedenberg and M. Meier. “On the Relationship between Hierarchy and Type Morphisms”.
Econ. Theory 46 (2011), 377–399.

[24] A. Friedenberg and M. Meier. “The Context of the Game”. Econ. Theory 63 (2017), 347–386.

[25] S. Fukuda. “The Existence of Universal Knowledge Spaces”. Essays in the Economics of
Information and Epistemology. Ph.D. Dissertation, the University of California at Berkeley,
2017, 1–113.

[26] S. Fukuda. “On the Consistency among Prior, Posteriors, and Information Sets (Extended
Abstract)”. Proc. 17th Conference on Theoretical Aspects of Rationality and Knowledge. Ed.
by L. S. Moss. 2019, 189–205.

[27] S. Fukuda. “Unawareness without AU Introspection”. J. Math. Econ. 94 (2021), 102456.

[28] J. Ganguli, A. Hiefetz, and B. S. Lee. “Universal Interactive Preferences”. J. Econ. Theory
162 (2016), 237–260.

[29] B. Golub and S. Morris. “Higher-Order Expectations”. Aug. 2017.

[30] P. Guarino. “The Topology-Free Construction of the Universal Type Structure for Condi-
tional Probability Systems”. Proc. 16th Conference on Theoretical Aspects of Rationality and
Knowledge. Ed. by J. Lang. 2017.

[31] P. Guarino and G. Ziegler. “Optimism and Pessimism in Strategic Interactions under Igno-
rance”. Games Econ. Behav. 136 (2022), 559–585.

[32] A. Heifetz, M. Meier, and B. C. Schipper. “Interactive Unawareness”. J. Econ. Theory 130
(2006), 78–94.

[33] A. Heifetz, M. Meier, and B. C. Schipper. “A Canonical Model for Interactive Unawareness”.
Games Econ. Behav. 62 (2008), 304–324.

[34] A. Heifetz and D. Samet. “Topology-Free Typology of Beliefs”. J. Econ. Theory 82 (1998),
324–341.

[35] Z. Hellman. “A Game with No Bayesian Approximate Equilibria”. J. Econ. Theory 153
(2014), 138–151.

[36] J. Hillas and D. Samet. “Dominance Rationality: A Unified Approach”. Games Econ. Behav.
119 (2020), 189–196.

[37] K. Hrbacek and T. Jech. Introduction to Set Theory. Third Edition. CRC Press, 1999.

32



[38] J. F. Mertens and S. Zamir. “Formulation of Bayesian Analysis for Games with Incomplete
Information”. Int. J. Game Theory 14 (1985), 1–29.

[39] S. Modica and A. Rustichini. “Awareness and Partitional Information Structures”. Theory
Decis. 37 (1994), 107–124.

[40] S. Morris. “The Logic of Belief and Belief Change: A Decision Theoretic Approach”. J. Econ.
Theory 69 (1996), 1–23.

[41] S. Morris. “Alternative Definitions of Knowledge”. Epistemic Logic and the Theory of Games
and Decisions. Ed. by M. Bacharach, L.-A. Gérard-Varet, P. Mongin, and H. S. Shin. Kluwer
Academic Publishers, 1997, 217–233.

[42] R. S. Simon. “Games of Incomplete Information, Ergodic Theory, and the Measurability of
Equilibria”. Isr. J. Math. 138 (2003), 73–92.

[43] R. Stalnaker. “On the Evaluation of Solution Concepts”. Theory Decis. 37 (1994), 49–73.

[44] M. Trost. “Epistemic Characterization of Iterated Deletion of Inferior Strategy Profiles in
Preference-Based Type Spaces”. Int. J. Game Theory 42 (2013), 755–776.

[45] E. Tsakas. “Epistemic Equivalence of Extended Belief Hierarchies”. Games Econ. Behav. 86
(2014), 126–144.

33


	Section 3
	Section 4.2
	Section 5
	Terminal Conditional-Belief Space
	Terminal Dynamic Knowledge-Belief Space
	Futher Possible Extensions
	Terminal Knowledge-Unawareness Space
	Terminal Preference Space
	Terminal Expectation Space


	Section 6
	Another Example of a Game with a Transfinite Process of IESDA
	An Example of a Game with a Transfinite Process of IEBA
	Iterated Elimination of Inferior Action Profiles
	Pure-Strategy Nash Equilibria
	Correlated Equilibria
	Terminal Belief Space with a Common Prior
	Correlated Equilibrium and Belief Hierarchies
	Correlated Equilibria and Bayes Rationality
	Intrinsic Correlation


	Section 7: Minimality
	Proofs
	Appendix D
	Appendix E
	Appendix F


