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Abstract

This paper constructs a canonical representation of players’ interactive be-
liefs, irrespective of natures of beliefs: whether beliefs are qualitative, truthful
(i.e., knowledge), or probabilistic (e.g., countably-additive, finitely-additive, or
non-additive). The canonical model is the “largest” interactive belief model
to which any particular model can be mapped in a unique belief-preserving
way. The key insight for the construction is the need to specify players’ pos-
sible depth of reasoning up to which they can interactively reason about their
beliefs (e.g., their beliefs, their beliefs about their beliefs, their beliefs about
their beliefs about their beliefs, and so on). The possible depth of reasoning
may be a transfinite level (beyond any finite level) when beliefs are qualita-
tive. The specification of possible depth of reasoning also has game-theoretic
implications for characterizations of some solution concepts using the canonical
space. For instance, for any strategic game with ordinal payoffs, there exists
a canonical interactive belief model which characterizes iterated elimination of
strictly dominated actions as an implication of common belief in rationality.
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1 Introduction

Consider a group of players who reason interactively about unknown external val-
ues, states of nature S, such as strategies in a game. Players reason about states
of nature—their strategies. Players also reason about their beliefs about states of
nature—their beliefs about each other’s strategies and consequently their rational-
ity. And so on. This paper constructs the first formal framework general enough
to represent any conceivable form of interactive beliefs irrespective of specific na-
tures of beliefs: whether beliefs are probabilistic or qualitative (i.e., binary) including
knowledge.

Unlike having been previously thought, the existence of the canonical space does
not depend on a specific nature of beliefs. Rather, the key insight behind the construc-
tion of the canonical space is the need to specify players’ possible depth of reasoning.
Roughly speaking, it is a pre-specified level of interactive beliefs of the form, Al-
ice believes that Bob believes that Alice believes that .... In the previous literature
on Harsanyi (1967-68) type spaces, the specification of possible depth of reasoning
is given by the implicit assumption that players’ countably-additive beliefs are de-
fined on a σ-algebra. This implicit assumption allows one to analyze any (at-most)
countable-level interactive beliefs. Turning to game-theoretic applications, for any
given strategic game where the players posses qualitative beliefs (including the case
of knowledge), a canonical belief space in which players’ possible depth of reasoning
is appropriately chosen characterizes the solution concept of iterated elimination of
strictly dominated actions as an implication of common belief in rationality.

To see the importance of specifying players’ possible depth of reasoning, consider
the following two-player strategic game 〈(Ai)i∈I , (ui)i∈I〉.

Example 1. Each player i announces an element from an ordered setAi := {0, 1, 2, 3, 4, . . . }∪
{a, b}, where 0 < 1 < 2 < 3 < 4 < · · · · · · < a < b. Announcing b always yields a pay-
off of 1 irrespective of the opponent’s announcement. For any other announcements,
if i’s announcement is (strictly) higher than the opponent’s, she obtains a payoff of
2; if not, she obtains a payoff of 0. Table 1 depicts player i’s payoff ui(ai, a−i) as a
function of ai (Row) and a−i (Column).

Consider the solution concept of iterated elimination of strictly dominated actions
(IESDA). At each round of elimination, the minimal element is always strictly dom-
inated. First, ai = 0 is a unique strictly dominated action in Ai; next, ai = 1 is a
unique strictly dominated action in Ai \ {0}; and so on. Once {0, 1, 2, 3, 4, . . . } have
been deleted from each player’s action set, in the subgame in which each player’s
action set is {a, b}, action a is strictly dominated by b. Thus, the action profile
(a1, a2) = (b, b) is the unique prediction under IESDA after one more elimination
(i.e., a) after eliminating 0, 1, 2, 3, 4, . . . . Hence, in order to reach the unique predic-
tion under IESDA, the players need to engage in a transfinite process of IESDA.1

1Lipman (1994) is a pioneering work pointing out the need for a transfinite (yet countable) process
of iterated elimination of never-best-replies.
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0 1 2 3 4 · · · · · · · · · a b
0 0 0 0 0 0 · · · · · · · · · 0 0
1 2 0 0 0 0 · · · · · · · · · 0 0
2 2 2 0 0 0 · · · · · · · · · 0 0
3 2 2 2 0 0 · · · · · · · · · 0 0
4 2 2 2 2 0 · · · · · · · · · 0 0
...

...
...

...
...

... · · · · · · · · · ...
...

...
...

...
...

...
... · · · · · · · · · ...

...
a 2 2 2 2 2 · · · · · · · · · 0 0
b 1 1 1 1 1 · · · · · · · · · 1 1

Table 1: Player i’s payoff ui(ai, a−i) in Example 1 as a function of ai (Row) and a−i
(Column).

While this example suggests that players may need to engage in a transfinite yet
countable level of interactive reasoning, the next example suggests that players may
need to engage in an arbitrarily long transfinite level of interactive reasoning. The
example also suggests that, for such a strategic game, a traditional type space may
not be able to properly formalize players’ uncountably many iterations of interactive
reasoning.

Example 2. Instead of actions {0, 1, 2, 3, 4, . . . } in Example 1, consider an interval
[0, 1] with a total order ≤ satisfying the following two properties: (i) x < a < b for
any x ∈ [0, 1], where < is the strict order associated with ≤ (i.e., x < a if x ≤ a and
x 6= a); and (ii) any non-empty subset of [0, 1] has the minimum element with respect
to ≤.2 Each player i’s action set is Ai := [0, 1] ∪ {a, b}. Define her payoff function ui
similarly to Example 1 using the strict order <.

Consider IESDA. As in the previous example, at each round of elimination, the
minimal element is always strictly dominated. First, the least element (denote by
ai = a0) is a unique strictly dominated action in Ai; next, the second least element
(denote by a1) is a unique strictly dominated action in Ai \ {a0}; and so on. By the
ordering ≤ on [0, 1], one can eliminate actions [0, 1] one by one.3 In the subgame in

2It is well-known in set theory that, by the Axiom of Choice, for any set, a total order satisfying
Property (ii) exists. Technically, one can identify [0, 1] = {aβ}β<α where α is some ordinal number,
so that the elements {aβ}β<α are ordered in a desired way. For the concepts in set theory which are
used in this paper (e.g., ordinal and cardinal numbers), see, for instance, Hrbacek and Jech (1999).

3Action a0 is eliminated from Ai. For any natural number n, action an is eliminated from
Ai \ {a0, . . . , an−1}. Once actions {a0, a1, . . . , an, . . . } have been eliminated, the next least element
in Ai \ {a0, a1, . . . , an, . . . } is eliminated (as action a is eliminated after {0, 1, . . . , n, . . . } have been
eliminated in Example 1). The process of elimination lasts indefinitely until all actions [0, 1] will be
eliminated (this can be rigorously formalized using ordinal numbers). Section 6.3.2 revisits Examples
1 and 2 using ordinal numbers.
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which each player’s action set is {a, b}, action a is strictly dominated by b. Thus, the
action profile (b, b) is the unique prediction under IESDA after uncountably many
eliminations.

This example can be generalized by replacing the set [0, 1] with any set with larger
cardinality. Hence, in order to reach the unique prediction under IESDA, the players
may need to engage in an arbitrarily long transfinite process of IESDA.

Thus, when analysts provide an epistemic characterization of such solution con-
cepts as IESDA for a given strategic game, it would be natural for them to consider a
class of interactive belief models in which players can engage in interactive reasoning
of an arbitrary but predetermined ordinal level. A pre-determined ordinal level is
sufficient because the number of eliminations of strictly dominated actions does not
exceed the number of action profiles in the original strategic game.

To see how the appropriately-chosen canonical interactive belief model captures
predictions under IESDA, I define a model of beliefs (a belief space).

A Belief Space. A model of beliefs (a belief space) consists of the following four
ingredients. The first ingredient is a set Ω. Each element ω ∈ Ω is a list of possible
specifications of the prevailing nature state s ∈ S (e.g., an action profile played at
state ω if S is the set of action profiles) and players’ interactive beliefs regarding
nature states S (i.e., their beliefs about nature states S, their beliefs about their
beliefs about S, and so on). Call each ω a state (of the world).

The second ingredient is a mapping Θ, which associates, with each state of the
world ω ∈ Ω, the corresponding state of nature Θ(ω) ∈ S. For instance, when players
are reasoning about their actions in a given strategic game (i.e., when S is the set
of action profiles of the given strategic game), the mapping Θ is a profile of players’
strategies which associate, with each state of the world, the corresponding actions
played at that state.

The third ingredient is the set of statements about which players can reason. These
statements, specified as subsets of states of the world Ω, are referred to as events.
For instance, when S is the set of action profiles of the given strategic game, an event
corresponds to a set of states of the world at which the players take a certain action
profile. A belief space has to specify the collection of events about which players can
reason, which I call the domain.

The fourth ingredient is players’ belief operators defined on the domain. For each
event E, player i’s belief operator assigns the set of states at which she believes that
E has occurred (simply referred to as “she believes E”), i.e., the event that i be-
lieves E. Specifying players’ beliefs through belief operators is general enough to
accommodate their probabilistic beliefs as well as qualitative beliefs. This is because
probabilistic beliefs can reduce to whether a player believes an event with probability
at least p (she p-believes the event) or not (Monderer and Samet, 1989).4 This paper

4In fact, Samet (2000) demonstrates the equivalence between the type space and the p-belief
operator approaches when players possess countably-additive probabilistic beliefs.
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demonstrates that one can represent various notions of qualitative or probabilistic
beliefs by imposing properties of those beliefs on belief operators. Thus, the frame-
work can accommodate qualitative beliefs (including knowledge) and probabilistic
(countably-additive, finitely-additive, or non-additive) beliefs.

Iterative applications of belief operators generate higher-order interactive reason-
ing. As will be discussed in Section 1.1, certain logical (i.e., set-theoretic) assumptions
on the domain determine players’ possible depth of reasoning through their belief
operators. For example, if the domain of a belief space is closed under countable
conjunction (i.e., set-theoretic countable intersection), then the belief space can rep-
resent common belief in rationality held by Alice and Bob, who are reasoning about
their actions in a strategic game: they believe that they are rational, they believe
that they believe that they are rational, and so on, ad infinitum. In the strategic
game in Example 1, one can formalize the countable iterations of mutual beliefs in
rationality (which lead to the countable elimination of strictly dominated actions in
the example) if the domain of a given belief space is a σ-algebra.5

Main Result and Its Application to IESDA (Informal). The main result of the paper
(Theorem 1 in Section 3) demonstrates the existence of a universal (precisely, termi-
nal) belief space into which any belief space is embedded in a unique manner that
maintains players’ interactive beliefs about nature states in that smaller space. As
each belief space enables one to describe interactive beliefs without explicitly speci-
fying the set of belief hierarchies that the given belief space induces, the existence of
a universal belief space guarantees that the belief space approach can represent all
possible hierarchies of beliefs.

To discuss its game-theoretic application to the solution concept of IESDA, con-
sider the following epistemic characterization. In any belief space, if the players have
(correct) common belief in rationality at a state, then their actions at that state
survive IESDA; and for any action profile that survives IESDA, there exists a belief
space in which there is a state at which the players have (correct) common belief in
rationality and take the given actions.6

In this characterization, within a particular belief space, some action profiles that
survive IESDA may not be predictions under common belief in rationality. Thus, as

5However, for the strategic game in Example 2, a belief space defined on a σ-algebra (including a
traditional type space) may not be able to formalize an uncountably long iteration of mutual beliefs
in rationality because the σ-algebra may not be closed under uncountable intersection.

6Two remarks are in order. First, see Brandenburger and Dekel (1987), Stalnaker (1994), and Tan
and Werlang (1988) for pioneering epistemic characterizations of IESDA. Second, technically, correct
common belief in rationality means that whenever the players commonly believe their rationality,
they are rational. This is weaker than directly assuming correctness on beliefs (i.e., Truth Axiom,
stating that if a player believes that an event has occurred then the event indeed has occurred).
When each player’s belief is assumed to satisfy certain logical properties, rationality and common
belief in rationality (instead of assuming correct common belief in rationality) also characterize
IESDA. See Section 6.3 for details.
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Friedenberg and Keisler (2021) argue, the above epistemic characterization pertains
to an analyst who does not know the players’ beliefs. Such an analyst would seek the
predictions under IESDA across all belief spaces associated with the given strategic
game. In contrast, in order to provide an epistemic characterization of IESDA from
the players’ perspective, namely, in order to obtain an epistemic characterization of
IESDA in a belief space in which the players’ reasoning leads to the set of all action
profiles that survive IESDA, one would need to have a belief space that induces all
possible belief hierarchies about the play of the game. This leads to the epistemic
characterization in a universal belief space.7

Indeed, as a game-theoretic application, Section 6.3 shows that any state of a belief
space at which the players commonly believe their rationality is uniquely mapped to
the corresponding state of the universal space at which the players commonly believe
their rationality. Thus, in the universal belief space, if the players commonly believe
their rationality at a state, then their actions at the state survive IESDA; and for any
action profile that survives IESDA, there exists a state in the universal space at which
the players commonly believe their rationality and take the given actions. For any
given strategic game with ordinal payoffs, there exists a universal belief space that can
represent the players’ iterated reasoning about their actions up to a predetermined
ordinal level, which suffices to pin down the predictions. Section 6.4 characterizes
Börgers (1993) dominance as an implication of common belief in weak-dominance
rationality for any strategic game with ordinal payoffs (Bonanno and Tsakas, 2018).

I establish the existence of a universal belief space as long as players’ beliefs are
represented by belief operators. My result is theoretically interesting in that the ex-
istence of a universal belief space is unrelated to assumptions on properties of beliefs.
For example, my paper reconciles the previous existence results on canonical proba-
bilistic belief structures and the previous non-existence results on canonical knowledge
(or more general qualitative-belief) structures. It is substantively interesting because
I establish the canonical representation of beliefs even when players’ beliefs may not
satisfy logical or introspective properties.

Applications to Qualitative Beliefs and Knowledge. My framework nests partitional
(Aumann, 1976) and non-partitional possibility correspondence models of knowledge
and qualitative beliefs by identifying the conditions on players’ belief operators un-
der which their beliefs are induced from a possibility correspondence. Each player’s
possibility correspondence associates, with each state, the set of states she considers
possible at that state. While a player in a partitional model is fully introspective
about what she knows and what she does not know, a player in a non-partitional

7Beyond the epistemic characterization of IESDA, the epistemic characterizations of extensive-
form rationalizability and iterated admissibility (avoidance of weak dominance) call for a “rich”
(precisely, belief-complete) belief space: see Battigalli and Siniscalchi (2002) and Brandenburger,
Friedenberg, and Keisler (2008), respectively. Proposition 1 in Section 4.1 shows that the universal
belief space in this paper is belief-complete.
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model may, for example, fail Negative Introspection—she does not know a certain
event, and she does not know that she does not know it.8 My framework also nests
other forms of possibility correspondence models of qualitative beliefs which may fail
to be truthful.9 I can further relax players’ logical reasoning abilities inherent in
possibility correspondence models. For example, players may fail to believe logical
consequences of their beliefs.

Applications to Probabilistic Beliefs. I construct a universal belief space in a way such
that beliefs can be probabilistic as in type spaces (Harsanyi, 1967-68): each player
has a type mapping that associates, with each state, a probability distribution on
the underlying states.10 Since the framework of this paper can accommodate various
forms of probabilistic beliefs through a collection of p-belief operators, the main result
of this paper also asserts the existence of a universal probabilistic (e.g., countably-
/finitely-/non-additive) belief space (Corollary 2). Also, this paper establishes such
universal belief space with or without a common prior. Technically, my construction
of a universal qualitative-belief space extends the topology-free construction of a
universal (countably-additive) type space by Heifetz and Samet (1998b).

1.1 Specification of Possible Depth of Reasoning

I discuss the role that the key notion, depth of reasoning, plays on the existence of a
universal belief space and its game-theoretic applications.

Previous Non-Existence Results. A standard belief space is a model in which any
subset of underlying states Ω is an event. Heifetz and Samet (1998a) demonstrate
that a universal standard partitional knowledge space generically does not exist.11

Moreover, Meier (2005) shows that there is no universal standard qualitative-belief
(including knowledge) space represented by a general non-partitional possibility cor-

8Non-partitional models are motivated in part by notions of unawareness (e.g., see Schipper
(2015) for a survey). The study of non-partitional models ranges from implications of common
knowledge and common belief (e.g., Agreement theorems (Aumann, 1976)) to solution concepts in
game theory. See, for example, Bacharach (1985), Brandenburger, Dekel, and Geanakoplos (1992),
Dekel and Gul (1997), Geanakoplos (2021), Morris (1996), Samet (1990), and Shin (1993).

9In the literature, knowledge is distinguished from belief in that a player can only know what is
true (i.e., Truth Axiom) while she can believe something false. This paper also has a game-theoretical
application of the difference between knowledge and belief. Section 6.4 shows that the epistemic
characterization of iterated elimination of “Börgers dominated” actions may call for the failure of
Truth Axiom. In contrast, Appendix E.3 shows that common knowledge (i.e., belief satisfies Truth
Axiom) of weak-dominance rationality characterizes the iterated elimination procedure of “inferior”
action profiles first introduced by Stalnaker (1994).

10The existence of a universal type/belief space is pioneered by Armbruster and Böge (1979), Böge
and Eisele (1979), and Mertens and Zamir (1985).

11The negative results are also obtained by Fagin (1994), Fagin et al. (1999), Fagin, Halpern, and
Vardi (1991), and Heifetz and Samet (1999).
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respondence.
How do my positive results reconcile with the negative results? What plays a

crucial role in establishing a universal knowledge (i.e., truthful-belief) space is the
specification of the domain of a knowledge space.

A κ-Algebra. To rigorously formalize the idea that the specification of the domain of
a knowledge space determines players’ possible depth of reasoning, let κ be an infinite
cardinal number. Call a collection of subsets of underlying states Ω a κ-algebra (a
shorthand for a κ-complete algebra) if it is closed under complementation and under
union (and consequently intersection) of any sub-collection with cardinality less than
κ. The power set of Ω is always a κ-algebra. For example, a κ-algebra subsumes an
algebra of sets if κ is the least infinite cardinal ℵ0. A κ-algebra subsumes a σ-algebra
if κ is the least uncountable cardinal ℵ1. Call a knowledge space (a belief space with
players’ beliefs truthful) a κ-knowledge space if its domain is a κ-algebra.

Specifying the domain of a knowledge space by a κ-algebra amounts to assuming
that players are able to interactively reason (at least) up to the ordinal depth of κ.12

That is, any κ-knowledge space can capture any knowledge hierarchy of the form,
Alice knows that Bob knows that ..., up to the ordinal level of κ. Thus, I formally
define depth of reasoning in a κ-belief space as the ordinal depth of κ (Remark 2).
For example, any ℵ0-knowledge space can capture any finite-level interactive knowl-
edge, because κ = ℵ0 is the least infinite cardinal and a knowledge hierarchy up
to the ordinal level of ℵ0 = |{0, 1, 2, . . . }| (where | · | denotes the cardinality of a
set) consists of all finite levels of interactive knowledge. Likewise, any ℵ1-knowledge
space can capture any countable-level knowledge hierarchy of the form, Alice knows
that Bob knows that Alice knows that ..., because ℵ1 is the least uncountable cardinal.

Main Result (Formal). The main result (Theorem 1 in Section 3) establishes that,
for each fixed cardinal κ, there is a universal κ-belief space in each class of κ-belief
spaces that respect some given assumptions on players’ beliefs. In particular, a uni-
versal κ-knowledge space exists within a class of κ-knowledge spaces. The key idea
behind the existence of the universal κ-belief space is to construct a belief space that
explicitly represents all levels of interactive beliefs up to the ordinal level of κ (e.g.,
all countable levels of beliefs if κ is the least uncountable cardinal).

Role of κ. The construction circumvents the previous non-existence results by explic-
itly specifying the domain of a qualitative belief (or knowledge) space as a κ-algebra.
Once I specify the domain as a κ-algebra, any κ-knowledge space can take into con-
sideration players’ interactive knowledge up to the ordinal level of κ. The universal
κ-knowledge space contains all knowledge hierarchies up to the ordinal depth of κ.

For a given set S of nature states, one can arbitrarily choose κ. Thus, when S is the

12Technically, the ordinal depth of an infinite cardinal number κ refers to the least ordinal number
which has cardinality κ. Section 2.1 provides the precise definition.
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Qualitative belief spaces where
a domain is a κ-algebra

Qualitative belief spaces
where a domain is the power set

A universal space

Probablistic belief spaces
(a domain is a σ-algebra)

A universal space

Figure 1: The Universal Belief Space within the Class of Belief Spaces: Qualitative
Beliefs (Left) and Countably-Additive Probabilistic Beliefs (Right).

set of action profiles in a given strategic game, choose κ large enough: κ > |S|.13 The
paper shows that the universal κ-belief space provides the epistemic characterization
of IESDA. As the cardinality of a given strategic game increases, κ increases without
end. Thus, I establish the existence of a universal κ-belief space for each κ.

Going back to the existence of a universal belief (especially, knowledge) space,
I turn the previously mentioned negative results into the positive one in two ways.
First, as shown in the left panel of Figure 1, I enlarge a class of knowledge spaces by
allowing the domain of a knowledge space to be a κ-algebra. The left panel depicts the
contrast between the previous non-existence results and the existence result (Theorem
1) by the fact that a universal space resides in the class of belief (knowledge) spaces
in which a domain is a κ-algebra.

Second, I construct a universal κ-knowledge space by collecting all knowledge hi-
erarchies of depth up to κ induced by the κ-knowledge spaces in the given class. In
the left panel of Figure 2, each dot on the triangle represents a state of the universal
κ-belief (knowledge) space with κ = ℵ1. That is, each state (dot) represents a belief
(knowledge) hierarchy of all countable levels. The one associated with the arrow is
the belief hierarchy induced by some state of some belief (knowledge) space Ω.14 The
set of belief (knowledge) hierarchies induced by the space Ω is embedded as a subset
of the set of all belief (knowledge) hierarchies up to the depth of κ (the small ellipse).
The set of all belief (knowledge) hierarchies up to the depth of κ is well-defined when
κ is fixed (in contrast, the set of all belief (knowledge) hierarchies of an arbitrary
depth is too big to be a set).

Comparison with the Probabilistic Case: Domain Specification. This paper shows

13In Example 1, take κ as the least uncountable cardinal number (i.e., the domain of a belief
space is a σ-algebra). In Example 2, take κ as a cardinal number larger than the cardinality of [0, 1]
(especially, the least cardinal number larger than the cardinality of [0, 1] exists). As seen in these
two examples, a cardinal κ may vary with nature states S.

14Take any state of any κ-belief space. One can define the players’ first-order beliefs about nature
states S, their second-order beliefs, and so on, up to the ordinal level of κ. In the case of the left-
panel of Figure 2, each such state induces a countable-level belief hierarchy because κ is the least
uncountable cardinal number.
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Ω

S

1st-order beliefs about S

2nd-order beliefs about S

Belief hierarchies
of all finite depths

Belief hierarchies
of all countable depths

Ω

S

1st-order beliefs about S

2nd-order beliefs about S

Belief hierarchies
of all finite depths

Belief hierarchies
of all countable depths

Figure 2: Construction of a Universal ℵ1-Belief Space: Qualitative Beliefs (Left) and
Countably-Additive Probabilistic Beliefs (Right).

that the existence hinges on the specification of a domain (i.e., depth of reasoning)
rather than on assumptions on beliefs themselves. Thus, the framework applies not
only to qualitative belief or knowledge but also to various forms of probabilistic beliefs
in a unified manner.15 Put differently, the facts that a universal probabilistic-belief
space has been constructed and that a universal knowledge space has been shown not
to exist reduce to whether the framework specifies depth of reasoning. As depicted
in the right panel of Figure 1, the domain of a (countably-additive) type space is
assumed to be a σ-algebra for the rather technical reason that a countably-additive
probability measure may not necessarily be defined on the power set.16 The domain
of a type space (σ-algebra) allows for capturing players’ countable-level interactive
probabilistic-beliefs. The domain of any ℵ1-qualitative-belief space (σ-algebra) also
allows for capturing players’ countable-level interactive qualitative-beliefs.

Comparison with the Probabilistic Case: Countable Additivity of Probabilistic Beliefs.
Yet, I construct a universal qualitative ℵ1-belief space by collecting all belief hierar-
chies up to the ordinal depth of ℵ1 (i.e., all countable-level belief hierarchies). This
seems to be in contrast to the construction of a universal type space in the case
of countably-additive probabilistic beliefs in the previous literature, as the universal
type space consists only of finite-level belief hierarchies (beliefs about states of na-
ture, beliefs about beliefs about states of nature, and so on, for only finitely many
iterations). There, the continuity (i.e., countable additivity) of beliefs guarantees
that finite-level beliefs can determine any subsequent countable level in a universal

15Appendix D.3 also discusses how the specification of a domain (i.e., depth of reasoning) sheds
light on the constructions of universal unawareness, preference, and expectation spaces.

16Suppose that an outside analyst studies the strategic game in Example 1 using a (probabilistic)
type space, as the set of action profiles is countable. Since the domain of the type space is a σ-
algebra, the type space can coincidentally represent countable levels of interactive reasoning, which
are sufficient for the unique prediction under IESDA.
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type space (e.g., Fagin et al., 1999; Heifetz and Samet, 1998b). The two-way arrow
in the right panel of Figure 2 illustrates that a belief hierarchy that contains all finite
levels of ineractive beliefs uniquely extends to the one that contains all countable
levels as in the literature on type spaces (Proposition 4). In fact, in the context of
finitely-additive beliefs, Meier (2006) shows, while a universal finitely-additive-belief
space does not exist if all subsets are measurable (see also Fagin et al., 1999), it exists
once players’ beliefs are defined on a κ-algebra.

Comparison with Other Canonical Knowledge Structures. My existence result of a
universal κ-knowledge space is related to the previous two positive results. First,
Meier (2008) constructs a universal knowledge-belief space in which players’ knowl-
edge operators operate only on a σ-algebra on which players’ probabilistic beliefs are
defined. The construction in Theorem 1 of Section 3 nests Meier (2008) as a special
class of ℵ1-knowledge(-belief) spaces under his assumptions on players’ knowledge,
which may not necessarily be induced from possibility correspondences. Technically,
in addition to nesting his result, this paper shows the existence of a universal κ-belief
space for such models as possibility correspondences of fully introspective or non-
introspective knowledge and qualitative beliefs. Conceptually, this paper shows that
the existence of a universal belief space is unrelated to a specific nature of beliefs
and hinges rather on specifying depth of reasoning. The specification of depth of
reasoning has game-theoretic applications as well. For the game in Example 1, a uni-
versal ℵ1-belief space can capture the players’ countable levels of reasoning leading to
the unique prediction under IESDA. For the game in Example 2, a universal κ-belief
space can capture the players’ interactive reasoning up to the ordinal level of κ which
leads to the unique prediction under IESDA if a large enough κ > |A1×A2| is chosen.

Second, Aumann (1999) constructs what he calls a canonical knowledge system,
where each state of the world is a “complete and coherent” set of formulas describing
finite levels of players’ interactive knowledge.17

Theorem 2 in Section 4.4 reformulates a universal belief space by generalizing
and modifying Aumann (1999)’s canonical knowledge system for any combination of
assumptions on players’ beliefs and for any domain (i.e., for any κ). In a particular
case in which players with fully-introspective knowledge reason about finite levels of
interactive knowledge, Theorem 2 formally proves that Aumann (1999)’s canonical
space can be taken as a universal ℵ0-knowledge space, contrary to the conjecture
of Heifetz and Samet (1998b, Section 6). Generally, Theorem 2 restates that the
universal κ-belief space is the largest set (i) consisting of “complete and coherent”
sets of formulas describing the players’ belief hierarchies; (ii) satisfying the “(collec-
tive) coherency” condition on the entire space that induces the players’ beliefs in a
well-defined manner; and (iii) respecting given assumptions on their beliefs. For ex-

17Meier (2012) provides a logical axiomatization of (countably-additive probabilistic) type spaces
and shows that its canonical system is a universal space, which is isomorphic to the universal type
space constructed by Heifetz and Samet (1998b).
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ample, when players can engage in countable-level interactive reasoning, i.e., κ = ℵ1,
a universal ℵ1-knowledge space, in contrast to Aumann (1999)’s canonical model, can
accommodate countable levels of interactive knowledge including common knowledge,
as in Example 1 (let alone Example 2 for an appropriately chosen κ). One can study
an implication of common belief in rationality, instead of common knowledge of ra-
tionality, in my universal ℵ1-belief space.

The paper is organized as follows. Section 2 defines a belief space, properties of
beliefs, and a universal belief space. Section 3 constructs a universal space (Theorem
1). Section 4 studies properties of the universal space. Especially, Section 4.4 charac-
terizes the universal space as the “largest” set describing players’ interactive beliefs
in a complete and coherent manner (Theorem 2). Section 5 discusses applications
to various forms of beliefs including probabilistic beliefs. Section 6 provides game-
theoretic applications. Section 7 compares the existence result of a universal knowl-
edge space with the previous non-existence results. Section 8 provides concluding
remarks. Proofs are relegated to Appendix A. Supplementary Appendix (Appendices
B to G), available online, provides supplementary discussions on the extensions of the
existence result to richer forms of beliefs and on further game-theoretic applications.

2 Belief Spaces

Section 2.1 provides technical preliminaries. Section 2.2 defines a belief space and
properties of beliefs. Section 2.3 defines a universal belief space.

2.1 Technical Preliminaries

This paper rigorously formalizes players’ hierarchies of beliefs (beliefs, beliefs over
beliefs, beliefs over beliefs over beliefs, etc) of transfinite levels by using ordinals
(ordinal numbers) and cardinals (cardinal numbers). Ordinals are also used as a
technical tool such as transfinite induction. Hence, this subsection provides technical
definitions related to ordinals and cardinals.

To deal with ordinals and cardinals in the standard mathematical manner, through-
out the paper, I assume the Axiom of Choice. The Axiom of Choice makes it possible
to associate, with an (infinite) cardinal κ, the least ordinal κ with its cardinality
|κ| = κ. Thus, the cardinal κ is also identified with the ordinal κ.18

Let κ be an infinite cardinal. For any given set X, call a collection X of subsets of
the set X a κ-complete algebra (κ-algebra, for short) (i) if {∅, X} ⊆ X and (ii) if X is
closed under complementation and is closed under arbitrary union (and consequently
intersection) of any non-empty sub-collection with cardinality less than κ. Formally,
the second condition is: (i) E ∈ X implies Ec ∈ X (I denote the complement of E

18Technically, the ordinal κ is called the initial ordinal of κ.
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by Ec or ¬E); and (ii) if E ∈ X for all E ∈ E , where 0 < |E| < κ, then its union⋃
E =

⋃
E∈E E and its intersection

⋂
E =

⋂
E∈E E belong to X . When I stress the

underlying space X, I also call the pair (X,X ) itself a κ-algebra.
For example, an ℵ0-algebra is an algebra of sets (i.e., a collection of subsets of

X containing X itself and being closed under complementation and finite union),
because ℵ0 is the least infinite cardinal. An ℵ1-algebra is a σ-algebra (i.e., a collection
of subsets of X containing X itself and being closed under complementation and
countable union), because ℵ1 is the least uncountable cardinal.

For an infinite cardinal κ, denote by Aκ(·) the smallest κ-algebra (i.e., the inter-
section of all κ-algebras) including a given collection. For example, Aℵ1(·) = σ(·)
generates the smallest ℵ1-algebra (i.e., σ-algebra).

I make a further technical remark on a κ-algebra. As mentioned in Meier (2006,
Remark 1), when one considers a κ-algebra (X,X ), it is without loss to assume the
infinite cardinal κ to be regular. This is because, even if the infinite cardinal κ is
not regular, (X,X ) is indeed a κ+-algebra, where the successor cardinal κ+ (i.e.,
the least cardinal which is greater than κ) is known to be regular by the Axiom
of Choice. Hence, if the analysts take a non-regular (i.e., singular) infinite cardinal
κ, then they are implicitly taking an infinite regular cardinal κ+ instead of κ. In
this sense, while the statement and consequently the proof of the main result (i.e.,
Theorem 1) explicitly assume that a given infinite cardinal κ is regular, the reader
(who is not familiar with the regularity of an infinite cardinal) could skip the precise
definition of the regularity of an infinite regular cardinal. Finally, note that ℵ0 and
ℵ1 are regular.

Throughout the paper, denote by I a non-empty set of players. Let S be a
non-empty set of states of nature, endowed with a sub-collection S of the power set
P(S). An element of S is regarded as a specification of the exogenous values that are
relevant to the strategic interactions among the players. For example, (S,S) is the set
of strategies or payoff functions endowed with a topological or measurable structure.

With an infinite regular cardinal κ fixed, I endow S with a “logical” (precisely, set-
algebraic) structure so that I call E ∈ Aκ(S) an event of nature. In the construction of
a universal κ-belief space in Section 3, each E ∈ Aκ(S) plays a role of a “proposition”
regarding nature states S about which players interactively reason. Hence, if E is a
nature event, then so is its complement Ec; if each E ∈ E with 0 < |E| < κ is a nature
event, then so are its union

⋃
E and its intersection

⋂
E . For example, if (S,S) is

a topological space and if one studies (countably-additive) probabilistic interactive
beliefs on (S,S) so that κ = ℵ1, then the collection Aℵ1(S) of nature events coincides
with the generated Borel σ-algebra σ(S), about which the players have beliefs.

2.2 Belief Spaces

I define a model of beliefs in which belief operators on a state space induce players’
interactive beliefs regarding nature states (S,S). I call the model a κ-belief space
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when the underlying state space is a κ-algebra. Definition 1 formally defines a κ-
belief space. Remark 1 discusses the role of specifying an infinite (regular) cardinal
κ in a κ-belief space. Definition 2 specifies properties of beliefs.

Definition 1 (Belief Space). A κ-belief space of I on (S,S) (a belief space, for short)

is a tuple
−→
Ω := 〈(Ω,D), (Bi)i∈I ,Θ〉 with the following three properties.

1. (Ω,D) is a κ-algebra. Call Ω the set of states of the world (the state space).
Call each E ∈ D an event (of the world). Call D the domain.

2. For each i ∈ I, Bi : D → D is player i’s belief operator. For each E ∈ D, Bi(E)
is the event that player i believes that E has occurred (player i believes E, for
short). A player i ∈ I believes an event E ∈ D at a state ω ∈ Ω if ω ∈ Bi(E).

3. Θ : (Ω,D)→ (S,Aκ(S)) is a measurable map: Θ−1(E) ∈ D for any E ∈ S.

In the κ-belief space
−→
Ω , each state of the world ω ∈ Ω is interpreted as a descrip-

tion of the corresponding nature state Θ(ω) ∈ S and the players’ interactive beliefs
about the events at ω (e.g., player i believes an event E at ω if ω ∈ Bi(E), player j
believes that i believes E at ω if ω ∈ BjBi(E), and so forth).

In Condition (3), since D is a κ-algebra, Θ is measurable as long as Θ−1(S) ⊆ D.
By this condition, any event of nature E ∈ Aκ(S) corresponds to the event Θ−1(E) ∈
D in the κ-belief space

−→
Ω .

For instance, when S is the set of action profiles of a strategic game, the mapping
Θ is a profile of the players’ strategy choices: it associates, with each state of the
world ω, the corresponding action profile Θ(ω) ∈ S. For a set of action profiles
E ∈ S, Θ−1(E) corresponds to the event that the players’ actions are in E. At a
state ω, player i believes that the players’ actions are in E if ω ∈ Bi(Θ

−1(E)), player
j believes i believes the players’ actions are in E if ω ∈ BjBi(Θ

−1(E)), and so forth.
Moreover, Θ−1 preserves any set-algebraic (“logical”) operations such as comple-

mentation (i.e., negation), intersection (i.e., conjunction), and union (i.e., disjunction)
in Aκ(S) to the domain D. For instance, the event Θ−1(Ec) that the players’ actions
are in Ec equals to the event (Θ−1(E))c that the players’ actions are not in E.

A standard partitional model assumes any subset of underlying states Ω to be an
event, i.e., D = P(Ω). In contrast, Definition 1 explicitly specifies the domain to be
a κ-algebra. The following remark illustrates that, when the domain is a κ-algebra,
one can always introduce players’ interactive beliefs about nature states up to the
ordinal level κ.

Remark 1 (Role of κ in a κ-Belief Space). For simplicity, assume I = {1, 2} and
consider mutual beliefs held by the two players. Denote by BI(·) := B1(·)∩B2(·) the
mutual belief operator. For any event F ∈ D, BI(F ) is the event that players 1 and
2 believe F . Especially, take F = Θ−1(E), where E ∈ S.

14



When κ is the least infinite cardinal ℵ0, one can always introduce any finite-level
mutual beliefs such as: the event BI(F ) that players 1 and 2 believe F (i.e., the
players’ first-order beliefs about nature event E), the event B2

I (F ) = BIBI(F ) that
players 1 and 2 believe that they believe F (i.e., the second-order beliefs of the players
about their (first-order) beliefs about nature event E), and so forth, for any finite
level n < ℵ0 where ℵ0 corresponds to the least infinite ordinal.

When κ is the least uncountable cardinal, one can always introduce any countable-
level mutual beliefs such as the event

⋂
n∈NB

n
I (F ), where Bn

I (F ) = BI(B
n−1
I (F )):

players 1 and 2 believe they believe ... they believe F (for any n times).19

Within the class of κ-belief spaces for a fixed κ, one can always introduce mutual
beliefs of the players up to the ordinal level κ. More specifically, one can define a
chain of mutual beliefs Bα

I for any non-zero ordinal α with |α| < κ as follows:

Bα
I (·) :=

{
BI(B

β
I (·)) if α = β + 1 for some β⋂

β<αB
β
I (·) if α is a limit ordinal

.20

Section 3 constructs the universal κ-belief space in a way so that the domain of the
universal κ-belief space turns out to be a κ-algebra generated by events corresponding
to nature states and players’ interactive beliefs up to the ordinal level κ. Game-
theoretic applications in Section 6 also suggests the importance of explicitly specifying
the ordinal level κ up to which players can interactively reason.

Moreover, in the context of probabilistic beliefs, the domain is usually specified as
a σ-algebra. In fact, the specification of the domain allows for treating both knowledge
and probabilistic beliefs on a κ-algebra (primarily, σ-algebra) at the same time.

Next, I define properties of qualitative beliefs. Theorem 1 (in Section 3) con-
structs a universal κ-belief space within a given class of κ-belief spaces satisfying
an arbitrary combination of properties specified below. As will be seen, the follow-
ing list of properties covers various classes of possibility correspondence models of
(introspective/non-introspective) knowledge and qualitative beliefs. For example, if
a belief operator Bi in a κ-belief space is induced by a partition, then Bi satisfies all
the properties below (the converse also holds with some redundancies).21

Definition 2 (Propeties of Beliefs). Let 〈(Ω,D), (Bi)i∈I ,Θ〉 be a κ-belief space. Fix
i ∈ I.

1. Monotonicity: Bi(E) ⊆ Bi(F ) for any E,F ∈ D with E ⊆ F .

2. Necessitation: Bi(Ω) = Ω.

19Note that this corresponds to the iterative definition of common belief. See Section 6.1.
20Any ordinal α is either a successor ordinal (i.e., α = β+ 1 for some ordinal β) or a limit ordinal.
21Theorem 1 extends to a class of κ-belief spaces in which belief operators satisfy general set-

theoretic properties (given in Lemma A.1 in Appendix A.1) beyond Definition 2. Using this result,
Section 5 constructs a universal probabilistic-belief space for various notions of probabilistic beliefs.
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3. λ-Conjunction (λ is a fixed infinite cardinal with λ ≤ κ):
⋂
E∈E Bi(E) ⊆ Bi(

⋂
E)

for any E ∈ P(D) with 0 < |E| < λ.

4. The Kripke property: for each (ω,E) ∈ Ω×D, ω ∈ Bi(E) if(f) E ⊇ bBi(ω) :=⋂
{E ∈ D | ω ∈ Bi(E)}.

5. Consistency: Bi(E) ⊆ (¬Bi)(E
c) for any E ∈ D.

6. Truth Axiom: Bi(E) ⊆ E for any E ∈ D.

7. Positive Introspection: Bi(·) ⊆ BiBi(·).

8. Negative Introspection: (¬Bi)(·) ⊆ Bi(¬Bi)(·).

First, Monotonicity states that if a player believes some event then she believes
any of its logical consequences. Second, Necessitation means that a player believes
any form of tautology such as E ∪ Ec expressed as Ω. Third, λ-Conjunction says
that a player believes any conjunction of events (with cardinality less than λ) if she
believes each event. For example, if Bi(E) denotes the event that player i believes
E with probability one (assume countable additivity), then Bi satisfies Monotonicity,
Necessitation, and λ-Conjunction for λ = ℵ1 but not necessarily for λ > ℵ1.

Fourth, the Kripke property is the condition under which Bi is induced from the
possibility correspondence bBi : Ω → P(Ω).22 The information (or possibility) set
bBi(ω) = {ω′ ∈ Ω | ω′ ∈ E for all E ∈ D with ω ∈ Bi(E)} consists of states i
considers possible at ω. The Kripke property implies Monotonicity, Necessitation,
and κ-Conjunction.

Fifth, Consistency means that, if a player believes an event E then she does
not believe its negation Ec. Probability-one belief satisfies Consistency, assuming
additivity. Sixth, Truth Axiom says that a player can only “know” what is true.
That is, if player i “knows” an event E at state ω then E is true at ω (i.e., ω ∈ E).
Truth Axiom distinguishes belief and knowledge, because a player may believe an
event E at ω even if E is not true at ω. Truth Axiom implies Consistency. Seventh,
Positive Introspection states that if a player believes some event then she believes
that she believes it. Eighth, Negative Introspection states that if a player does not
believe some event then she believes that she does not believe it.

Three remarks are in order. First, one can assume different properties of beliefs
for different players. Players may also have multiple kinds of “belief” operators.23

22If there is b : Ω → P(Ω) with Bi(E) = {ω ∈ Ω | b(ω) ⊆ E} for all E ∈ D, then Bi satisfies the
Kripke property, i.e., Bi(E) = {ω ∈ Ω | bBi

(ω) ⊆ E} for all E (the converse trivially holds). See
Fukuda (2019, Remark 1).

23For instance, one can introduce both knowledge and belief by extending the set of players to
{0, 1} × I, where player i’s knowledge operator (which satisfies Truth Axiom) is Ki := B(0,i) while
her qualitative-belief operator is Bi := B(1,i). See Appendix D.2.
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Second, my framework nests possibility correspondence models. Assume the
Kripke property. The other properties can be expressed in terms of the possibil-
ity correspondence. First, Bi satisfies Consistency if and only if (iff, for short) bBi
is serial (i.e., bBi(·) 6= ∅). Second, Bi satisfies Truth Axiom iff bBi is reflexive (i.e.,
ω ∈ bBi(ω) for all ω ∈ Ω). Third, Bi satisfies Positive Introspection iff bBi is transitive
(i.e., ω′ ∈ bBi(ω) implies bBi(ω

′) ⊆ bBi(ω)). Fourth, Bi satisfies Negative Introspection
iff bBi is Euclidean (i.e., ω′ ∈ bBi(ω) implies bBi(ω) ⊆ bBi(ω

′)). Thus, bBi forms a par-
tition iff Bi satisfies Truth Axiom, Positive Introspection, and Negative Introspection
(note that Negative Introspection and Truth Axiom imply Positive Introspection).
Likewise, one can capture non-partitional models (see footnote 8): bBi is reflexive
and transitive iff Bi satisfies Truth Axiom and Positive Introspection. Also, one can
capture qualitative beliefs: bBi is serial, transitive, and Euclidean iff Bi satisfies Con-
sistency, Positive Introspection, and Negative Introspection. In this way, one can
identify various classes of possibility correspondence models on a κ-algebra (Ω,D).
For each of such classes of possibility correspondence models, Theorem 1 in Section
3 implies the existence of a universal possibility correspondence model in the class.

Third, in order to accommodate Truth Axiom, the state space (Ω,D) may not
necessarily be assumed to be the product κ-algebra of the nature states (S,Aκ(S))
and the players’ type sets ((Ti, Ti))i∈I (all of which form a κ-algebra). If player i’s
beliefs depend only on her own types, then Bi would violate Truth Axiom.

2.3 A Terminal Belief Space

The previous subsection has defined belief spaces (Definition 1) and properties of
beliefs (Definition 2). Any possible combination of properties of beliefs in Definition
2 and an infinite regular cardinal κ determine the class of κ-belief spaces that respect
the given properties of beliefs. Theorem 1 in Section 3 constructs a universal κ-belief
space in such a class of κ-belief spaces.

To that end, Definition 4 defines a universal belief space in a given class of belief
spaces as a terminal belief space in the class. It is a belief space to which every belief
space in the given class is uniquely mapped in a belief-preserving manner. I start by
formalizing the notion of a belief-preserving map, a belief morphism.

Definition 3 (Belief Morphism). Let
−→
Ω = 〈(Ω,D), (Bi)i∈I ,Θ〉 and

−→
Ω′ = 〈(Ω′,D′), (B′i)i∈I ,Θ′〉

be belief spaces of a given class. A (belief) morphism ϕ :
−→
Ω →

−→
Ω′ is a measurable map

ϕ : (Ω,D) → (Ω′,D′) satisfying: (i) Θ = Θ′ ◦ ϕ; and (ii) Bi(ϕ
−1(E ′)) = ϕ−1(B′i(E

′))
for each (i, E ′) ∈ I ×D′.

The morphism ϕ associates, with each state ω ∈ Ω, the corresponding state ϕ(ω) ∈
Ω′ with the two conditions. Condition (i) requires that the same nature state prevail
between two states ω and ϕ(ω). Condition (ii) states that the players’ beliefs are
preserved from one space to another: player i believes an event E ′ at ϕ(ω) iff she
believes ϕ−1(E ′) at ω.
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For any belief space
−→
Ω , the identity map idΩ on Ω is a morphism from

−→
Ω into

itself. Denote by idΩ :
−→
Ω →

−→
Ω the identity (belief) morphism. Next, call a belief

morphism ϕ :
−→
Ω →

−→
Ω′ a (belief) isomorphism, if there is a morphism ψ :

−→
Ω′ →

−→
Ω

with ψ ◦ ϕ = idΩ and ϕ ◦ ψ = idΩ′ (that is, ϕ is bijective and its inverse ϕ−1 is a

morphism). If ϕ is an isomorphism then its inverse ϕ−1 is unique. Belief spaces
−→
Ω

and
−→
Ω′ are isomorphic, if there is an isomorphism ϕ :

−→
Ω →

−→
Ω′.

Now, I define a terminal belief space. It “includes” all belief spaces in that any
belief space can be mapped to the terminal space by a unique morphism.

Definition 4 (Terminal Belief Space). Fix a class of κ-belief spaces of I on (S,S).

A κ-belief space
−→
Ω∗ in the class is terminal if, for any κ-belief space

−→
Ω in the class,

there is a unique morphism ϕ :
−→
Ω →

−→
Ω∗.

Fix a non-empty set of players I, a space of nature states (S,S), an infinite cardinal
κ, and assumptions on the players’ beliefs. Then, the given class of κ-belief spaces of I

on (S,S) forms a category, where a belief space
−→
Ω is an object and a belief morphism

is a morphism. In the language of category theory, a terminal κ-belief space in the
class is a terminal object in the category of belief spaces. As is well known in category
theory, a terminal belief space (in a given class) is unique up to belief isomorphism.

3 Construction of a Terminal Belief Space

Throughout this section, fix a category of κ-belief spaces of I on (S,S) that satisfy
some given properties of beliefs in Definition 2, where κ is an infinite regular cardinal.
A belief space refers to a κ-belief space of I on (S,S) in the given category.

I construct a terminal belief space by employing the “expressions-descriptions”
approach (Heifetz and Samet, 1998b; Meier, 2006, 2008). The construction in this
section demonstrates that the existence of the terminal κ-belief space hinges on the
specification of the infinite regular cardinal κ, which determines possible “depth of
reasoning,” rather than on properties of beliefs themselves.

The construction of a terminal belief space consists of six steps.24 The first step
is to inductively define expressions, syntactic formulas defined solely in terms of na-
ture and interactive beliefs about nature.25 Informally, in the terminal type space
construction (e.g., Brandenburger and Dekel, 1993; Mertens and Zamir, 1985), the
counterpart to this step is to inductively construct players’ belief hierarchies (their
first-order beliefs about nature states, their second-order beliefs about nature states
and the first-order beliefs, and so on) from the nature states (S, σ(S)). Since any na-
ture event is an object of beliefs, I treat any nature event E ∈ Aκ(S) as a proposition

24While the explanations in the main text are self-contained, Appendix B provides graphical
illustrations which intend to supplement the explanations of these six steps.

25Technically, the inductive definition uses transfinite induction.
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and call it an expression. Since objects of beliefs are closed under conjunction, nega-
tion, and the players’ beliefs, I define the corresponding syntactic (not set-theoretic)
operations for expressions. For a set of expressions E , let (

∧
E) be a (syntactic) ex-

pression denoting the conjunction of expressions E . For an expression e, let (¬e) be
the (syntactic) expression denoting the negation of e, and let (βi(e)) be the (syntactic)
expression denoting that player i believes e.26 Formally:

Definition 5 (Expressions). Let λ be an infinite regular cardinal with λ ≤ κ. The
set of all λ-expressions LIλ(Aκ(S)) is the smallest set satisfying the following.

1. Nature: Every nature event E ∈ Aκ(S) is a λ-expression.

2. Conjunction: If E is a set of λ-expressions with 0 < |E| < λ, then so is (
∧
E).

3. Negation: If e is a λ-expression then so is (¬e).

4. Beliefs: If e is a λ-expression, then so is (βi(e)) for each i ∈ I.

For λ = κ, call each κ-expression an expression, and denote L = LIκ(Aκ(S)).

Before providing technical discussions about Definition 5, I define the depth of an
expression.

Remark 2 (Depth of an Expression). The set L is a language (as a terminology
in logic) that represents any form of interactive beliefs regarding nature states (i.e.,
player i’s beliefs about nature Aκ(S), player i’s beliefs about player j’s beliefs about
nature, and so on) up to the ordinal depth κ.

Formally, one can define the depth of a λ-expression e, depth(e), as an ordinal
in the following way. First, any nature event E ∈ Aκ has depth 0: depth(E) := 0.
Second, for any collection of λ-expressions E with 0 < |E| < λ, the depth of

∧
E is

defined as depth(
∧
E) := supe∈E depth(e). Third, the depth of (¬e) is equal to that

of e: depth(¬e) := depth(e). Fourth, the depth of βi(e) is defined as depth(βi(e)) :=
depth(e) + 1 for any i ∈ I. By construction, (i) any λ-expression e has depth(e) < λ;
and (ii) for any ordinal α < λ, there exists a λ-expression e with depth(e) = α.27

With this definition in mind, the infinite regular cardinal κ determines the players’
possible depth of reasoning κ.

If, for instance, κ is the least infinite cardinal ℵ0, then the set L = LIκ(Aκ(S))
can capture any finite-level interactive beliefs in the sense that the set contains finite-
depth expressions. Thus, the set L contains such expressions as (βi1βi2 · · · βin)(e) (i.e.,
the expression that represents “player i1 believes that i2 believes that ... in believes

26Thus, for instance, for a nature event E ∈ Aκ(S), I define player i’s belief in E (denoted βi(E))
not as an element of the set Aκ(S) but as a syntactic formula.

27For instance, when λ = ℵ0, any λ-expression has finite depth; and for any finite n there exists
a λ-expression with depth n.
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e ∈ Aκ(S)”) for any finite number n ∈ N. The set L, however, does not contain the
infinite conjunction of such expressions.

In contrast, if κ is the least uncountable cardinal ℵ1, then the set L = LIκ(Aκ(S))
can capture any countable-level interactive beliefs in the sense that the set contains
at-most-countable-depth expressions. Thus, the set L contains such expressions as∧
n∈N(βi1βi2 · · · βin)(e) (i.e., the expression that represents “player i1 believes that i2

believes that ... in believes e ∈ Aκ(S) for any n ∈ N”).

Three technical remarks on Definition 5 are in order. First, since κ is fixed, for
each λ, the (smallest) set LIλ(Aκ(S)) is well-defined by induction. Remark 3 below
also implies that L and consequently LIλ(Aκ(S)) are well-defined sets.

Second, I consider κ-expressions beyond λ = ℵ0 because, when it comes to qualita-
tive beliefs, a belief hierarchy of all finite-level beliefs may not necessarily uniquely pin
down the corresponding belief hierarchy of all countable-level beliefs. This contrasts
with the literature on probabilistic type spaces.28

Third, for ease of notation, I often add or omit parentheses in denoting expressions
(and in other occurrences). If E is a set of expressions with 0 < |E| < κ, then let
(
∨
E) := ¬(

∧
{(¬e) ∈ L | e ∈ E}). Thus,

∨
E denotes the disjunction of E . Also, I

interchangeably denote, for instance, e1 ∧ e2 =
∧
{e1, e2} and e1 ∨ e2 =

∨
{e1, e2}. I

interchangeably denote
∧
j∈J ej =

∧
{ej | j ∈ J} and

∨
j∈J ej =

∨
{ej | j ∈ J} when

expressions are indexed by some set J . Denote the implication (e→ f) := ((¬e)∨ f)
and the equivalence (e↔ f) := ((e→ f) ∧ (f → e)).

The following remark shows how the set of expressions L is inductively generated
from the nature states (S,Aκ(S)) in κ steps.

Remark 3 (Restatement of Expressions L). Let λ be an infinite regular cardinal

with λ ≤ κ. The following auxiliary ordinal sequence (Lα)λα=0 generates the set of
expressions LIλ(Aκ(S)) = Lλ. In particular, if λ = κ then L = Lκ. Namely, let
L0 := Aκ(S). For any ordinal α with 0 < α ≤ λ, define

Lα := L′α ∪ {(¬e) | e ∈ L′α} ∪ {
∧
F | F ⊆ L′α and 0 < |F| < λ}, where

L′α := (
⋃
β<α

Lβ) ∪
⋃
i∈I

{βi(e) | e ∈
⋃
β<α

Lβ}.

In the remark, (Lα)κα=0 is an increasing sequence of sets of expressions such that,
starting from nature events L0 = Aκ(S), each set Lα contains interactive beliefs about
expressions

⋃
β<α Lβ. For instance, the set L1 contains the players’ first-order beliefs

about nature events βi(e). The set L2 contains their second-order beliefs about nature
events βiβj(e). For the least infinite ordinal α, the set Lα contains any finite-depth
expression of the form (βi1βi2 · · · βin)(e). For α = κ, L = Lκ consists of expressions

28Proposition 4 in Section 5.1 shows that, for countably-additive probabilistic beliefs on ℵ1-
algebras, ℵ0-expressions LIℵ0(Aℵ1(S)) suffice to capture countable-level interactive beliefs, consis-
tently with the construction of a terminal type space in the literature.
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of depth less than κ, i.e., logical formulas expressing interactive beliefs regarding
(S,Aκ(S)) up to depth κ.29

While expressions themselves are defined independently of any particular belief

space, for any belief space
−→
Ω , I inductively identify each expression e with the cor-

responding event JeK−→
Ω
∈ D so that JeK−→

Ω
is the set of states of the world in which

the expression e holds. Recalling the inductive definition in Definition 5, I start with
an expression E ∈ Aκ(S). Let JEK−→

Ω
:= Θ−1(E) ∈ D be the set of states at which

E ∈ Aκ(S) is true. If JeK−→
Ω

is defined as an event in D for some expression e, then for
the expression βi(e) (“i believes e”), let Jβi(e)K−→Ω := Bi(JeK−→Ω ) be the set of states (in
−→
Ω ) at which player i believes expression e. Thus, I inductively define the mapping

J·K−→
Ω

, which associates, with each expression e ∈ L, the event JeK−→
Ω
∈ D in

−→
Ω that

expression e holds. Following the terminology in logic, I refer to the mapping J·K−→
Ω

as

the semantic interpretation function of
−→
Ω . Formally:

Definition 6 (Expressions Identified as Events). Fix a κ-belief space
−→
Ω . Inductively

define the map J·K−→
Ω

: L → D, the semantic interpretation function of
−→
Ω , as follows.

1. Nature: JEK−→
Ω

:= Θ−1(E) for every E ∈ Aκ(S).

2. Conjunction: J
∧
EK−→

Ω
:=
⋂
e∈EJeK−→Ω for any E ∈ P(L) with 0 < |E| < κ.

3. Negation: J¬eK−→
Ω

:= (JeK−→
Ω

)c for each expression e.

4. Beliefs: Jβi(e)K−→Ω := Bi(JeK−→Ω ) for each i ∈ I and expression e.

The semantic interpretation function J·K−→
Ω

of a given belief space is, by induction,
uniquely extended from Θ−1. Remark 4 below states that, by induction, a morphism

preserves the meaning of an expression. Namely, let ϕ :
−→
Ω →

−→
Ω′ be a morphism.

Then, an expression e holds at ω (i.e., ω ∈ JeK−→
Ω

) iff it holds at ϕ(ω) (i.e., ϕ(ω) ∈
JeK−→

Ω′
). Formally:

Remark 4 (Morphism Preserves the Meaning of an Expression). If ϕ :
−→
Ω →

−→
Ω′ is a

morphism, then J·K−→
Ω

= ϕ−1(J·K−→
Ω′

).

The second step is to define descriptions by the set of expressions and the nature
state that obtain at each state of each belief space. Each description turns out to
be a state of the terminal space. That is, each state in the terminal space describes
the nature state and the set of expressions that hold at some state of some belief
space. In defining a description, observe that nature states and expressions reside in
different spaces. Thus, I define a description to be a subset of the disjoint union

S t L := {(0, s) ∈ {0} × S | s ∈ S} ∪ {(1, e) ∈ {1} × L | e ∈ L}.
29It can be seen that, for any successor ordinal α, any expression in Lα has depth weakly less than

α and that, for any non-zero limit ordinal α, any expression in Lα has depth less than α.
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While this definition of the description is different from the one in the previous lit-
erature, this definition uniquely identifies the corresponding nature state for each
description without any condition on (S,S).30 Formally:

Definition 7 (Descriptions). For any belief space
−→
Ω and ω ∈ Ω, define the description

D(ω) of ω by D(ω) := {Θ(ω)} t {e ∈ L | ω ∈ JeK−→
Ω
}.

Each description D(ω) = {(0,Θ(ω))} ∪ {(1, e) ∈ {1} × L | ω ∈ JeK−→
Ω
} contains

the unique nature state Θ(ω) ∈ S associated with ω and the expressions e which are
true at ω.31 For ease of notation, write s ∈0 D(ω) for (0, s) ∈ D(ω). Also, write
e ∈1 D(ω) for (1, e) ∈ D(ω). The reader could even read “s ∈ D(ω)” and “e ∈ D(ω)”
by disregarding the subscripts 0 and 1.

Remark 5 (Belief Hierarchy of Depth up to κ). One can interpret each D(ω) as
a set of expressions that represents each player’s belief hierarchy (her belief about
nature Aκ(S), her belief about the players’ beliefs about nature, and so on) of depth
up to κ that holds at ω (together with the state of nature Θ(ω)). That is, for any
expression e ∈ L (which, by construction, has depth less than κ) and for any player
i ∈ I, exactly one of the following holds: βi(e) ∈1 D(ω) (if player i believes JeK−→

Ω
at

ω) or (¬βi)(e) ∈1 D(ω) (if she does not believe JeK−→
Ω

at ω).32 In this sense, D(ω)
represents the belief hierarchy (precisely, the players’ belief hierarchies) at ω, and this
second step is analogous to defining belief hierarchies induced by some type of some
player in the construction of a terminal type space.33

Descriptions have two roles in constructing a terminal belief space. First, I will
construct the terminal belief space so that the underlying states Ω∗ consist of all
descriptions of states of the world ranged over all belief spaces in the given category:

Ω∗ := {ω∗ ∈ P(S t L) | ω∗ = D(ω) for some
−→
Ω and ω ∈ Ω}. (1)

30Meier (2006, 2008) assumes the following “separative” condition on (S,S): for any distinct
s, s′ ∈ S, there is E ∈ S with (s ∈ E and s′ 6∈ E) or (s′ ∈ E and s 6∈ E) (i.e., there is E ∈ Aκ(S)
with s ∈ E and s′ 6∈ E). Then, {s} =

⋂
{E ∈ Aκ(S) | s ∈ E} for each s ∈ S, though it may be the

case that {s} 6∈ Aκ(S). Moss and Viglizzo (2004, 2006) also impose the separative condition.
31Note that (0, s) ∈ D(ω) indicates which nature event belongs to D(ω) in the following sense:

for any E ∈ Aκ(S), (1, E) ∈ D(ω) iff s ∈ E. For ease of exposition, I simply include all expressions
including nature events which are true at ω in the description D(ω).

32More specifically, the players’ first-order beliefs are incorporated in D(ω) as follows: for any
nature event E ∈ Aκ(S), player i believes JEK−→

Ω
at ω (i.e., ω ∈ BiJEK−→

Ω
) iff βi(E) ∈1 D(ω).

For their second-order beliefs, player i believes j believes JEK−→
Ω

at ω (i.e., ω ∈ BiBjJEK−→
Ω

) iff
βiβj(E) ∈1 D(ω). For any n ∈ N, player i1 believes i2 believes ... in believes JEK−→

Ω
at ω (i.e.,

ω ∈ (Bi1Bi2 · · ·Bin)JEK−→
Ω

) iff (βi1βi2 · · ·βin)(E) ∈1 D(ω). Thus, one can interpret the description
D(ω) as the players’ belief hierarchies of depth up to κ at ω.

33In fact, since any two terminal spaces are isomorphic, when the construction of a terminal space
in this section is applied to the case with probabilistic beliefs (see Section 5), the description D(ω) is
formally in a one-to-one relation with the profile of the corresponding nature state and the players’
belief hierarchies (in the form of a sequence of probability distributions) at ω.
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Second, I regard D as a mapping D : Ω→ Ω∗ (or D−→
Ω

to stress the domain of D)

for any belief space
−→
Ω , and I call D the description map. The description map D

turns out to be a unique morphism.
Two technical remarks are in order. First, Ω∗ is not empty because there is a

belief space
−→
Ω with Ω 6= ∅ in the given category.34

Second, Ω∗ depends on the choice of a category of belief spaces. The more as-
sumptions on beliefs one imposes, the smaller Ω∗ becomes. Formally, consider two
categories of belief spaces where assumptions on players’ beliefs in the first are also
imposed in the second. Denoting by Ω1∗ and Ω2∗ the spaces constructed according to
Equation (1), Ω2∗ ⊆ Ω1∗ holds by construction.

To show that the description map D is a unique morphism (in the sixth step),
here I remark that a morphism preserves the descriptions in the following sense.

Remark 6 (Morphism Preserves Descriptions). If ϕ :
−→
Ω →

−→
Ω′ is a morphism, then

D−→
Ω

= D−→
Ω′
◦ ϕ.

To see this, fix belief spaces
−→
Ω and

−→
Ω′ and (ω, ω′) ∈ Ω × Ω′. Then, D−→

Ω
(ω) =

D−→
Ω′

(ω′) iff (i) Θ(ω) = Θ′(ω′) and (ii) ω ∈ JeK−→
Ω

iff ω′ ∈ JeK−→
Ω′

for all e ∈ L. Thus,
D−→

Ω
(ω) = D−→

Ω′
(ω′) means that states ω and ω′ are equivalent in terms of a prevailing

nature state and prevailing expressions, abstracting away from physical representa-

tions of
−→
Ω and

−→
Ω′. By Remark 4, both conditions are met for any (ω, ϕ(ω)) ∈ Ω×Ω′

where ϕ :
−→
Ω →

−→
Ω′ is a morphism. Thus, states ω and ϕ(ω) induce the same profile

of the players’ belief hierarchies together with the corresponding nature state.

I discuss two implications of Remark 6. First, call a belief space
−→
Ω non-redundant

(Mertens and Zamir, 1985, Definition 2.4) if its description map D is injective. In
other words, for any distinct ω and ω′, either Θ(ω) 6= Θ(ω′) or they are separated
by Dκ := {JeK−→

Ω
∈ D | e ∈ L} (i.e., there exists JeK−→

Ω
∈ Dκ such that (ω ∈ JeK−→

Ω
and

ω′ 6∈ JeK−→
Ω

) or (ω′ ∈ JeK−→
Ω

and ω 6∈ JeK−→
Ω

)).35

Second, Remark 6 implies that if
−→
Ω′ is non-redundant then there is at most one

morphism from a given space
−→
Ω into

−→
Ω′.36 The sixth step shows that D−→

Ω
:
−→
Ω →

−→
Ω∗

is a unique morphism by demonstrating that D−→
Ω∗

is the identity.
The third step is to define the domain D∗ of the candidate terminal belief space

Ω∗. Since each expression e corresponds to an object of interactive beliefs, define the
set [e] of descriptions that make e true (i.e., contain e) to be an event in Ω∗.

34Consider a belief space
−→
{s} := 〈({s},P({s})), (idP({s}))i∈I ,Θ〉 where s ∈ S and Θ : {s} 3 s 7→

s ∈ S. Each Bi = idP({s}) satisfies all the properties of beliefs in Definition 2.
35The collection Dκ, which consists of events JeK−→

Ω
that correspond to expressions e ∈ L (i.e.,

events that are generated by states of nature and belief hierarchies), can be expressed solely by the
primitives of the belief space by Definition 17 in Section 7.

36Proof. If ϕ,ψ :
−→
Ω →

−→
Ω′ are morphisms then D−→

Ω′
◦ ϕ = D−→

Ω
= D−→

Ω′
◦ ψ. Since D−→

Ω′
is injective,

ϕ = ψ.
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Formally, for each e ∈ L, define the set of descriptions [e] := {ω∗ ∈ Ω∗ | e ∈1 ω
∗}.

I show that D∗ := {[e] ∈ P(Ω∗) | e ∈ L} is a legitimate domain.

Lemma 1 (Domain D∗). 1. (Ω∗,D∗) is a κ-algebra.

2. For any belief space
−→
Ω , the description map D : (Ω,D) → (Ω∗,D∗) is a mea-

surable map with D−1([e]) = JeK−→
Ω

for any e ∈ L.

The property, D−1
−→
Ω

([·]) = J·K−→
Ω

, exhibits duality between the semantic interpre-

tation function J·K−→
Ω

: L → D (which, by induction, is unique) and the description

map D−→
Ω

:
−→
Ω →

−→
Ω∗ (which turns out to be a unique morphism) in the follow-

ing sense. Through J·K−→
Ω

, each expression e ∈ L that represents nature states and

interactive beliefs is interpreted as an event JeK−→
Ω

in the given space
−→
Ω . In con-

trast, through D−→
Ω

, each state ω in the given space
−→
Ω is re-formulated as the cor-

responding nature state and expressions (i.e., the description) D−→
Ω

(ω). The prop-
erty D−1

−→
Ω

([·]) = J·K−→
Ω

also implies that Dκ is the sub-κ-algebra induced by D−→
Ω

:

Dκ = {D−1
−→
Ω

([e]) ∈ D | e ∈ L} = D−1
−→
Ω

(D∗).
Call

−→
Ω minimal (Di Tillio, 2008) if Dκ = D.37 It will be shown that if a given

belief space is non-redundant and minimal, then the belief space is isomorphic to a
subspace of the terminal space.

The fourth step is to construct the mapping Θ∗ : Ω∗ → S that associates with
each state ω∗ ∈ Ω∗ the unique nature state s contained in ω∗ (i.e., s ∈0 ω

∗).

Lemma 2 (Mapping Θ∗). There is a measurable map Θ∗ : (Ω∗,D∗) → (S,Aκ(S))
with the following properties:

1. Θ∗(D(ω)) = Θ(ω) for any belief space
−→
Ω and ω ∈ Ω; and

2. (Θ∗)−1(E) = [E] ∈ D∗ for all E ∈ Aκ(S).

The fifth step is to introduce the players’ belief operators on D∗ in a way such
that player i believes an event [e] at a state ω∗ iff ω∗ contains βi(e) (i.e., βi(e) ∈1 ω

∗).
That is, I define B∗i : D∗ → D∗ by B∗i ([e]) := [βi(e)] for each e ∈ L. I show that this
is well-defined: if expressions e and f satisfy [e] = [f ], then [βi(e)] = [βi(f)].

Lemma 3 (Belief Operators B∗i ). Fix i ∈ I.

1. B∗i is a well-defined belief operator which inherits the properties of beliefs im-
posed in the given category.

37Thus, the given belief space is minimal if the domain D consists solely of events Dκ that are
generated by nature states and belief hierarchies (recall footnote 35). The notion of minimality turns
out to be equivalent to what Friedenberg and Meier (2011) call strong measurablity. See Appendix
F for the characterization of minimality (strong measurability).
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2. Moreover, for any belief space
−→
Ω , D−1(B∗i ([e])) = Bi(D

−1([e])) for all [e] ∈ D∗.

Lemma A.1 in Appendix A.1 shows that each B∗i inherits properties of beliefs
beyond Definition 2. In other words, this paper shows the existence of a terminal
belief space as long as players’ beliefs are represented by their belief operators and
properties of the belief operators satisfy the set-theoretic conditions of Lemma A.1 in
Appendix A.1. In fact, Section 5 extends the construction of a terminal belief space
to such cases as probabilistic beliefs.

Lemma A.1 implies that if there is a belief space
−→
Ω such that Bi fails a given

property with respect to some JeK−→
Ω

, then B∗i fails that property with respect to [e].
Thus, B∗i satisfies the properties of beliefs for player i that are common among all
the belief spaces in the given category.38

So far,
−→
Ω∗ = 〈(Ω∗,D∗), (B∗i )i∈I ,Θ∗〉 is a belief space of the given category such

that, for any belief space
−→
Ω , the description map D : Ω→ Ω∗ is a morphism.

The sixth step finally establishes that the description mapD is a unique morphism.

To that end, I show that the description map from
−→
Ω∗ into itself is the identity map.

Lemma 4 (Description Map D−→
Ω∗

). The description map D−→
Ω∗

:
−→
Ω∗ →

−→
Ω∗ is the

identity morphism.

I prove Lemma 4 by showing [·] = J·K−→
Ω∗

, which means whether an expression e
holds at ω∗ (the right-hand side) is determined solely by whether e ∈1 ω

∗ (the left-

hand side). The lemma implies that the belief space
−→
Ω∗ is non-redundant and minimal.

Together with Remark 6, the lemma implies that D−→
Ω

is a unique morphism.39 Thus:

Theorem 1 (
−→
Ω∗ is Terminal). The space

−→
Ω∗ = 〈(Ω∗,D∗), (B∗i )i∈I ,Θ∗〉 is a terminal

κ-belief space of I on (S,S) for a given category of κ-belief spaces.

As discussed in Section 2.3, a terminal belief space exists uniquely up to isomor-
phism. Since terminality requires a unique morphism from a given space, a belief

space
−→
Ω is terminal iff the description map D−→

Ω
is an isomorphism. Especially, any

terminal space is non-redundant and minimal.
I discuss how the belief space Ω∗ “includes” all belief spaces. First, for any state ω

of any particular space
−→
Ω , states ω ∈ Ω andD(ω) ∈ Ω∗ are equivalent in that the same

state of nature Θ(ω) = Θ∗(D(ω)) prevails and the same set of expressions regarding
nature and interactive beliefs (i.e., the same profile of the players’ belief hierarchies)
obtains. This is because D(ω) = D−→

Ω∗
(D(ω)) (recall discussions after Remark 6). To

restate, for any representation
−→
Ω of interactive beliefs regarding (S,S) and for any

38Consider, for instance, the category of possibility correspondence models of knowledge without
Negative Introspection. Among the category, B∗i fails to satisfy Negative Introspection (even though
there are some spaces in the category in which the belief operator Bi satisfies Negative Introspection).

39Let ϕ :
−→
Ω →

−→
Ω∗ be a morphism. Then D−→

Ω
(·) = D−→

Ω∗
(ϕ(·)) = ϕ(·), where the first equality

follows from Remark 6 and the second from Lemma 4.

25



state ω ∈ Ω, the prevailing nature state and the prevailing set of expressions at ω are

encoded in the state D(ω) in
−→
Ω∗. Especially, the expressions {e ∈ L | ω ∈ Bi(JeK−→Ω )}

that player i believes at ω coincide with those {e ∈ L | ω∗ ∈ B∗i ([e])} that she believes
at ω∗.

Second, a non-redundant belief space
−→
Ω is, by definition, embedded into

−→
Ω∗:

there is a belief (sub-)space
−−−→
D(Ω) := 〈(D(Ω),D∗ ∩D(Ω)), (B′i)i∈I ,Θ

∗|D(Ω)〉 such that

D :
−→
Ω →

−−−→
D(Ω) is a bijective morphism, where D∗ ∩D(Ω) := {[e] ∩D(Ω) | [e] ∈ D∗}

and B′i([e] ∩ D(Ω)) := B∗i ([e]) ∩ D(Ω). If, in addition,
−→
Ω is minimal, then

−→
Ω and

−−−→
D(Ω) are isomorphic (i.e., the inverse D−1 is also a morphism) because any E ∈ D
is associated with some [e] ∈ D∗ through [e] = D−1(E). Indeed,

−→
Ω and

−−−→
D(Ω) are

isomorphic iff
−→
Ω is non-redundant and minimal. Observe that if this is the case, then

a κ-algebra D is typically not the power set.

4 Characterization of the Terminal Space

The previous section has constructed the terminal space
−→
Ω∗, which is also non-

redundant and minimal. This section studies properties of the terminal space
−→
Ω∗

further. Section 4.1 shows that the terminal space is (belief-)complete (Branden-
burger, 2003): the space contains all possible beliefs about its states. Section 4.2
shows: any set of expressions that hold at some state of some belief space also hold
at the corresponding state of the terminal space. Section 4.3 demonstrates how the
terminal space resolves the issue of self-reference (e.g., Aumann, 1976): while each
state is supposed to represent players’ interactive beliefs, their beliefs are defined on
the states. Section 4.4 introduces the notion of a belief-closed set and restates the
terminal belief space as the largest belief-closed set (Theorem 2).

4.1 Belief-Completeness

In the literature on type spaces, epistemic characterizations of solution concepts of
games often refer to (belief-)completeness of a type space.40 Informally, call a belief

space
−→
Ω (belief-)complete if, for any profile of sets of expressions that individual

players can possibly believe within the framework of belief spaces, there exists a
state ω ∈ Ω at which each player believes the corresponding set of expressions. This

40A type space (i.e., a set of states of the world is the product space consisting of the set of
nature states and each player’s type set, and a type of each player induces a probabilistic belief
over the types of the opponents) is (belief-)complete if, for any belief over the types of the players
other than i, there exists a type of player i which induces the given belief. A terminal type space
is (belief-)complete (Moss and Viglizzo, 2004, 2006). A (belief-)complete type space is terminal
given topological conditions (Friedenberg, 2010), and Friedenberg and Keisler (2021) show that the
topological conditions cannot be dropped (these two papers also study iterated elimination of strictly
dominated actions in the type-space framework). See also Appendix D.1.
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subsection shows that a non-redundant and minimal belief space is terminal iff it is

(belief-)complete. Especially, the terminal space
−→
Ω∗ is (belief-)complete.41

To define (belief-)completeness, fix a category of κ-belief spaces (that satisfy some
properties of beliefs specified in Definition 2). I define a new set Ω∗∗ as follows:

Ω∗∗ := {(s,Ψ) ∈ S × P(L)I |(s,Ψ) = (Θ(ω), ({e ∈ L | ω ∈ BiJeK−→Ω})i∈I)

for some belief space
−→
Ω and ω ∈ Ω}.

The set Ω∗∗ consists of a nature state s and sets of expressions Ψ that individual
players believe in the category of belief spaces. Since assumptions on beliefs are
arbitrary and thus it is cumbersome to explicitly define the conditions on sets of
expressions Ψ that reflect given assumptions of beliefs (see Section 4.4 for an explicit
characterization), here I consider sets of expressions that the players believe at some
state of some belief space.

Call a belief space
−→
Ω (in the given category) (belief-)complete if the mapping

χ−→
Ω

: Ω 3 ω 7→ (Θ(ω), ({e ∈ L | ω ∈ Bi(JeK−→Ω )})i∈I) ∈ Ω∗∗

is surjective. Each mapping ω 7→ {e ∈ L | ω ∈ Bi(JeK−→Ω )} that constitutes part of χ−→
Ω

defines player i’s “type mapping” that associates, with each state ω, her beliefs on Ω
about the expressions L (or Dκ).42 With this definition:

Proposition 1 (Belief-Completeness). 1. A belief space
−→
Ω is terminal (in the

given category) iff it is minimal, non-redundant, and (belief-)complete.

2. A belief space
−→
Ω is non-redundant iff χ−→

Ω
is injective.

3. The mapping χ−→
Ω∗

: Ω∗ → Ω∗∗ is bijective. In particular,

Ω∗∗ = {(Θ∗(ω∗), ({e ∈ L | ω∗ ∈ B∗i [e]})i∈I) ∈ S × P(L)I | ω∗ ∈ Ω∗}. (2)

The main part of the proposition is Part (1). It implies that a non-redundant and

minimal belief space is (belief-)complete iff it is terminal. Especially,
−→
Ω∗ is (belief-

)complete. The proof shows that (belief-)completeness of
−→
Ω∗ follows from

(Θ(ω), ({e ∈ L | ω ∈ BiJeK−→Ω})i∈I) = (Θ∗(D(ω)), ({e ∈ L | D(ω) ∈ B∗i [e]})i∈I). (3)

41To define the notion of (belief-)completeness in a way free from the structure of an underlying set
of states of the world (it does not need to be a product space) and properties of beliefs (i.e., beliefs
can be qualitative and are independent of such properties as Truth Axiom, Positive Introspection and
Negative Introspection), I define (belief-)completeness in terms of “language” (sets of expressions
that individual players believe), following the idea of Brandenburger and Keisler (2006).

42Section 5.1 applies the construction in Section 3 to probabilistic beliefs. There, player i’s p-belief
operators (Bpi )p∈[0,1] yield her type mBi(ω) at a state ω through the maximum probability p with
which she believes an event at the state: mBi

(ω)(E) := sup{p ∈ [0, 1] | ω ∈ Bpi (E)} for each E ∈ D.
Hence, the set of expressions that a player believes at a state recovers her beliefs at that state.
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For any state of nature and any profile of sets of expressions that individual players

believe at some state ω of some belief space
−→
Ω (the left-hand side), there exists a

state D(ω) in the terminal belief space at which the corresponding state of nature
prevails and the players believe the given sets of expressions (the right-hand side).

Part (3) implies that the mapping χ−→
Ω∗

, which associates, with each state ω∗ ∈ Ω∗,
the corresponding nature state and profile of sets of expressions that the individual
players believe at ω∗, is a bijection. This gives a sense in which each state ω∗ ∈ Ω∗

represents what each player believes at the state ω∗ itself. This is because, for any
expression e, whether player i believes [e] or not at ω∗ (i.e., whether ω∗ ∈ B∗i [e] or
not) is incorporated within ω∗ itself in the sense of whether βi(e) ∈1 ω

∗ or not.

Proposition 1 demonstrates the sense in which
−→
Ω∗ contains all possible beliefs

about its states, as a (belief-)complete type space contains all possible beliefs about
its types (see footnote 40). Namely, the set Ω∗ is in a bijective relation with the set

{(s,Ψ) ∈ S × P(D∗)I |(s,Ψ) = (Θ(ω∗), ({[e] ∈ D∗ | ω∗ ∈ Bi([e])})i∈I)
for some belief space 〈(Ω∗,D∗), (Bi)i∈I ,Θ〉 and ω∗ ∈ Ω∗}

through a bijection ω∗ 7→ (Θ(ω∗), ({[e] ∈ D∗ | ω∗ ∈ B∗i ([e])})i∈I). For any profile of
nature state that holds and sets of events that the individual players believe at some

state of some belief structure on (Ω∗,D∗), there is a state in
−→
Ω∗ that generates the

given profile. Thus,
−→
Ω∗ contains all possible beliefs about its states.

4.2 Informational Robustness

This subsection formalizes a sense in which interactive beliefs about nature states S
in a particular belief space can be extended to the terminal space. Recall that the
set L of expressions (Definition 5) specifies, without reference to any specific belief
space, the nature states S and players’ interactive beliefs about S. Concretely, let
S be the set of action profiles of a strategic game. Let e ∈ S be a subset of action
profiles. The expression e denotes “the players’ actions are in e.” Then, the expression
f :=

∧
i∈I βi(e) denotes “every player believes that the players’ actions are in e.” In

this way, one can capture a certain form of players’ interactive beliefs by using the
set of expressions.

Now, one can ask whether a set of expressions holds at a particular state of a
particular belief space. For instance, the set of expressions {e, f} holds true at some
state ω (i.e., at ω, the players’ actions are in e and every player believes that their

actions are in e) in some belief space
−→
Ω if ω ∈ JeK−→

Ω
and ω ∈ JfK−→

Ω
. It may be the

case that, in the particular space
−→
Ω , the players’ actions at ω are in e and the players

take actions in e iff they believe that their actions are in e (for instance, this holds
when their actions are in e at any state and their beliefs satisfy Necessitation). Then,
the set of expressions {e, f} indeed holds true at ω. Moreover, e and f happen to be
equivalent in the sense that JeK−→

Ω
= JfK−→

Ω
.
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Proposition 2 below shows that, for the set of expressions {e, f} that holds at some

state ω of some belief space
−→
Ω , the set of expressions {e, f} holds at the corresponding

state D(ω) of the terminal space
−→
Ω∗. Thus, at D(ω), the players’ actions are in e and

they believe their actions are in e.

In contrast, suppose that there exists a belief space
−→
Ω′ with JeK−→

Ω′
6= JfK−→

Ω′
. In

this case, for instance, there may exist a state ω′ ∈ Ω′ at which {e, (¬f)} holds.

Proposition 2 below shows that if some belief space
−→
Ω′ distinguishes expressions e and

f in that JeK−→
Ω′
6= JfK−→

Ω′
, then so does the terminal space

−→
Ω∗. At D−→

Ω′
(ω′), while the

players’ actions are in e, they do not believe that their actions are in e. This suggests
that the equivalence of e and f , i.e., JeK−→

Ω
= JfK−→

Ω
, is an additional assumption

imposed by the structure of the particular belief space
−→
Ω . In fact, the expressions e

and f are not equivalent in the terminal space, i.e., JeK−→
Ω∗
6= JfK−→

Ω∗
.

To make these claims formal, I start with introducing:

Definition 8 (Semantic Properties). 1. (a) An expression e ∈ L is valid in a

belief space
−→
Ω , written |=−→

Ω
e, if JeK−→

Ω
= Ω.

(b) If e is valid in any belief space of the given category, then e is valid (in the
given category), written |= e.

2. (a) A set of expressions Φ ∈ P(L) is satisfiable in
−→
Ω if there is ω ∈ Ω with

ω ∈ JfK−→
Ω

for all f ∈ Φ.

(b) Call Φ satisfiable if Φ is satisfiable in some belief space
−→
Ω .

3. A set of expressions Φ ∈ P(E) is maximally satisfiable if it is satisfiable and if
Φ = Ψ for any satisfiable set Ψ with Φ ⊆ Ψ.

4. (a) An expression e ∈ L is a semantic consequence of Φ ∈ P(L) in
−→
Ω , written

Φ |=−→
Ω
e, if: ω ∈ JeK−→

Ω
holds whenever ω ∈ JfK−→

Ω
for all f ∈ Φ.

(b) If Φ |=−→
Ω
e for any belief space

−→
Ω , then e ∈ L is a semantic consequence of

Φ, written Φ |= e.

A morphism preserves the notion of validity, satisfiability, and semantic conse-

quences in the following senses. Let ϕ :
−→
Ω →

−→
Ω′ be a morphism. By Remark 4, any

valid expression e in
−→
Ω′ is also valid in

−→
Ω . If Φ is satisfiable in

−→
Ω , then so is it in

−→
Ω′.

Suppose further that ϕ is surjective. If e is a semantic consequence of Φ in
−→
Ω , then

so is it in
−→
Ω′.

The following proposition formalizes a sense in which interactive beliefs about
nature states S in a particular belief space can be extended to the terminal space,

using the semantic notions of satisfiability, semantic consequence, and validity in
−→
Ω∗.

Proposition 2 (Informational Robustness). Let e ∈ L and Φ ∈ P(L).
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1. Φ is satisfiable iff Φ is satisfiable in
−→
Ω∗.

2. e is a semantic consequence of Φ iff e is a semantic consequence of Φ in
−→
Ω∗.

Also, e is valid iff e is valid in
−→
Ω∗.

3. Ω∗ = {{s} t Φ ∈ P(S t L) | Φ is maximally satisfiable and, for any E ∈
Aκ(S), s ∈ E iff E ∈ Φ}.

Part (1) means that if expressions Φ hold at some state ω in some belief space
−→
Ω , then the expressions Φ hold at D(ω) in

−→
Ω∗. The set of expressions that hold at

some state of some belief space is maximally satisfiable, and any maximally satisfiable
set, in turn, can be associated with the set of expressions that hold at some state of

some belief space. Thus, Part (3) demonstrates that each state of
−→
Ω∗ is a maximally

satisfiable set of expressions and a corresponding nature state.
Part (2) implies that if expressions e and f satisfy JeK−→

Ω
6= JfK−→

Ω
for some belief

space
−→
Ω , then JeK−→

Ω∗
6= JfK−→

Ω∗
. Put differently, if JeK−→

Ω∗
= JfK−→

Ω∗
, then it is always the

case in any belief space
−→
Ω that JeK−→

Ω
= JfK−→

Ω
. Thus, the space

−→
Ω∗ makes the minimum

possible assumptions on how the players’ interactive beliefs about nature states are
modeled.43

Proposition 2 provides a formal sense in which reasoning about the states of
nature S in a smaller belief space can be extended to the terminal space. Section
6.3 shows that players’ rationality and common belief in rationality are well-defined
in every qualitative-belief space. This is because, in the context of Section 6.3 in
which S is the set of action profiles of a strategic game, players’ rationality and
common belief in rationality are expressed solely from players’ interactive reasoning
about S. If the players are rational at some state of some belief space, then they are
rational at the corresponding state of the terminal space. For probabilistic beliefs,
Appendix E.5 studies correlated equilibria. One epistemic characterization is Bayes
rationality: a probabilistic-belief space in which each player is Bayes rational at every
state (and thus players commonly believe their Bayes rationality) is a correlated
equilibrium (Aumann, 1987). In the category of probabilistic-belief spaces in which
Bayes rationality is valid, a terminal space exists. At every state of the terminal
space, the players are Bayes rational (and hence they commonly believe their Bayes
rationality).

To sum up this subsection, I discuss two papers. First, Bjorndahl, Halpern, and
Pass (2013) study psychological games (Battigalli and Dufwenberg, 2009; Geanako-
plos, Pearce, and Stacchetti, 1989) in which players’ interactive qualitative beliefs
themselves enter into their preferences. This paper implies that one can introduce

43For instance, consider the category of belief spaces in which each player’s belief operator Bi
satisfies the Kripke property, Consistency, Positive Introspection, and Negative Introspection. Then,
in the terminal space, B∗i satisfies these four properties, andB∗i violates any other properties of beliefs
that are not derived from these four properties (e.g., Truth Axiom).
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an arbitrary notion of beliefs including qualitative beliefs in psychological games.44

Bjorndahl, Halpern, and Pass (2013) introduce the language (as a formal terminology
in logic) which describes players’ strategy choices and their interactive beliefs (in the
framework of this paper, Lℵ0(Aℵ0(S))), and a player’s utility function is defined on
the set, each element of which is a maximally satisfiable set of formulas from the
language. By Proposition 2 (3), a maximally satisfiable set of expressions, together
with a corresponding nature state (i.e., the players’ strategy choices), constitute a

state of the terminal space
−→
Ω∗. Hence, each player i’s payoff function is defined over

the terminal space Ω∗.45 For solution concepts, Bjorndahl, Halpern, and Pass (2013)
define rationalizablility by its epistemic characterization. As discussed above, Section
6.3 studies an implication of common belief in rationality.

Second, in the context of Bayesian games, Friedenberg and Meier (2017) show that
a (smaller) type space may have a Bayesian equilibrium that cannot be extended to
a larger type space (e.g., a terminal type space of Brandenburger and Dekel (1993),
Heifetz and Samet (1998b), and Mertens and Zamir (1985)). On the one hand, re-
call that, in the above applications when the players interactively reason about their

actions of an underlying strategic game, a belief space
−→
Ω = 〈(Ω,D), (Bi)i∈I ,Θ〉 en-

codes the players’ strategy choices Θ as part of the primitives. Also, the strategies
Θ are always assumed to be measurable. Thus, strategy choices and rationality are

well-defined within the belief space
−→
Ω . In fact, Appendix E.4 provides an epistemic

characterization of pure-strategy Nash equilibria on the terminal belief space. Ap-
pendix E.5 shows that if a correlated equilibrium as a probabilistic-belief space is
non-redundant and minimal then the underlying state space Ω of the correlated equi-
librium can be replaced by a subspace D(Ω) of the terminal space which consists of
players’ belief hierarchies.

On the other hand, in a Bayesian game in which the players have uncertainty about

payoff parameters S, a Bayesian equilibrium consists of (i) a belief space
−→
Ω (in which

the players reason about payoff parameters S) and, separately from the belief space,
(ii) the players’ (equilibrium) strategy choices, which are functions from the states of

the world Ω to the action profiles A. In the belief space
−→
Ω , the function Θ : Ω → S

associates, with each state of the world, the corresponding payoff parameter Θ(ω) ∈ S,

44For probabilistic beliefs, this paper accommodates the existence of a universal probabilistic-belief
space or that of a universal conditional-probabilistic-belief space. In fact, this paper establishes such
existence result without imposing certain properties of beliefs such as countable additivity. Hence,
it is possible to extend the scope of psychological games to non-standard probabilistic beliefs. As
to qualitative beliefs, this paper extends the framework of Bjorndahl, Halpern, and Pass (2013) in
which interactive beliefs are represented through a logical system. Also, as an example of the use
of qualitative belief in psychological games, suppose Alice can send Bob either flowers or chocolates
(Geanakoplos, Pearce, and Stacchetti, 1989). Alice enjoys surprising Bob. So, if Alice believes that
Bob expects (i.e., believes that he receives) flowers, she sends chocolates, and vice versa.

45As standard psychological games consider probabilistic beliefs or probabilistic conditional beliefs,
Section 5 establishes a terminal space for probabilistic beliefs and Appendix D.1 a terminal space
for probabilistic conditional beliefs.
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not their action profile. As shown by Friedenberg and Meier (2017) (see also the
references therein for the broader literature), Bayesian equilibria may depend on a
specific belief space within which belief hierarchies are modeled and some Bayesian
equilibria in a given belief space may fail to extend to a larger belief space.

The analyses of this subsection are different from Friedenberg and Meier (2017) in
the sense that the players’ strategy choices are incorporated within a belief space itself
for the game-theoretic applications in Section 6, and this paper does not claim that
players’ reasoning about Bayesian equilibria in a smaller belief space is preserved
to a larger space. In fact, in the context of Bayesian games, Proposition 2 would
imply only that the players’ reasoning about payoff uncertainty S in a smaller space
is preserved in the terminal space. This paper would clarify that a terminal space
includes reasoning in a smaller space only about a given set S of nature states. Only
to clarify this issue further, Appendix C briefly mentions a possibility that one may
be able to analyze Bayesian equilibria of a fixed underlying game in a terminal belief
space by incorporating players’ strategy choices as a primitive of a belief space. There,
the set of states of nature is the product space S × A, where S is the set of payoff
parameters and A is the set of action profiles of the underlying game.

4.3 Self-Reference

A conceptual issue in modeling players’ beliefs on a state space since Aumann (1976)
is the interpretation of each state as a “full” description of players’ beliefs at the
state, as this interpretation leads to self-reference: each state refers to players’ beliefs
at that state. For instance, suppose player i believes some event E at a state ω. If
each state is a full description, then the state ω has to include the description that
“player i believes E at ω.” This subsection formalizes the sense in which each state

ω∗ of the terminal space
−→
Ω∗ is a full description of players’ beliefs at the state.

Observe that each state ω∗ of the terminal space
−→
Ω∗ represents each player’s belief

at that state by using expressions that hold at ω∗. That is, the state ω∗ represents
the fact that player i believes an event [e] at ω∗, i.e., ω∗ ∈ B∗i ([e]), by βi(e) ∈1 ω

∗.

Generally, each state ω∗ of the terminal space
−→
Ω∗ contains expressions that hold

at ω∗ (i.e., e ∈1 ω
∗ iff ω∗ ∈ [e]) as well as the corresponding nature state Θ∗(ω∗) ∈

S. Thus, I define two conditions for each state ω∗ to be a full description of the
corresponding nature state and players’ beliefs at that state.

The first is its logical structure, following Aumann (1999). Each ω∗ is coherent :
if ω∗ contains an expression e then it does not contain (¬e). Each ω∗ is complete: if
ω∗ does not contain e then it contains (¬e). As shown below, every ω∗ is logically
closed under implication and conjunction.

Proposition 3 (Logical Properties of Each State). Fix ω∗ ∈ Ω∗, e ∈ L, f ∈ L, and
E ∈ P(L) with 0 < |E| < κ.

1. Coherency and Completeness: e 6∈1 ω
∗ iff (¬e) ∈1 ω

∗.
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2. Closure under Implication: If e ∈1 ω and (e→ f) ∈1 ω, then f ∈1 ω.

3. Closure under Conjunction:
∧
E ∈1 ω

∗ iff e ∈1 ω
∗ for all e ∈ E.

Second, the terminal space
−→
Ω∗ resolves self-reference as each player’s beliefs at each

state ω∗ are written within ω∗ itself in the sense that ω∗ ∈ B∗i ([e]) iff βi(e) ∈1 ω
∗.

Since each ω∗ satisfies the logical requirement postulated in Proposition 3 and since B∗i
inherits the properties of beliefs assumed in a given category, the following corollary
shows that the players’ beliefs at each state are encoded within the state itself.

Corollary 1 (Beliefs within Each State). Fix ω∗ ∈ Ω∗, i ∈ I, and e ∈ L.

1. Exactly one of βi(e) ∈1 ω
∗ or (¬βi)(e) ∈1 ω

∗ holds.

2. At least one of βi(e) ∈1 ω
∗, βi(¬e) ∈1 ω

∗, or (¬βi)(e) ∧ (¬βi)(¬e) ∈1 ω
∗ holds.

Exactly one of them always holds (for any (e, ω∗)) iff Consistency holds for i.

3. Exactly one of βi(e) ∈1 ω
∗, (¬βi)(e)∧βi(¬βi)(e) ∈1 ω

∗, or (¬βi)(e)∧(¬βi)(¬βi)(e) ∈1

ω∗ holds. The third condition never occurs (for any (e, ω∗)) iff Negative Intro-
spection holds for i.

Part (1) of Corollary 1 provides the sense in which each ω∗ fully describes i’s beliefs:
for any e ∈ L, the state ω∗ contains exactly one of the two expressions denoting “i
believes e” or “i does not believe e.” Parts (2) and (3) characterize how the space
Ω∗ encodes whether such assumptions as Consistency and Negative Introspection are
made within Ω∗. For instance, if player i’s beliefs violate Consistency, then at some
state ω∗ at which Consistency is violated for some [e] (i.e., ω∗ ∈ B∗i ([e]) ∩ B∗i (¬[e])),
the state ω∗ contains the expressions βi(e) and βi(¬e), explicitly indicating that player
i’s beliefs violate Consistency. Corollary 1 is related to some consistency conditions
of Gilboa (1988) for a state to be a full description of players’ beliefs. The next
subsection characterizes how states in Ω∗ encode all the properties of beliefs specified
in Definition 2 by demonstrating that properties imposed on player i’s beliefs in a
given category are expressed within Ω∗.

4.4 Largest Belief-Closed Set Ω∗

In the terminal belief space
−→
Ω∗ constructed in Section 3, the state space Ω∗ is implicitly

characterized as the set of the players’ belief hierarchies D−→
Ω

(ω) at some state ω of

some belief space
−→
Ω . This subsection, instead, explicitly characterizes the space

−→
Ω∗

as the largest belief-closed set.
Call a subset Ω of P(S t L) belief-closed if: (i) each ω ∈ Ω is a complete and

coherent set of expressions together with a unique nature state; (ii) the set Ω as a
whole induces the players’ beliefs in a well-defined manner; and (iii) each ω reflects
assumptions on players’ beliefs. This characterization holds for any infinite regular
cardinal κ and assumptions on beliefs. Formally:
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Definition 9 (Belief-Closed Set of Descriptions). Call a subset Ω of P(S t L) a
belief-closed set of descriptions if it satisfies the following conditions.

1. Each ω ∈ Ω satisfies the following.

(a) Nature State: There is a unique s ∈ S with s ∈0 ω. Moreover, for all
E ∈ Aκ(S), s ∈ E iff E ∈1 ω.

(b) Coherency and Completeness: For each e ∈ L, e 6∈1 ω iff (¬e) ∈1 ω.

(c) Closure under Implication: If e ∈1 ω and (e→ f) ∈1 ω then f ∈1 ω.

(d) Closure under Conjunction: For any E ∈ P(L) with 0 < |E| < κ,
∧
E ∈1 ω

iff e ∈1 ω for all e ∈ E .

2. The set Ω satisfies the following ((2b) and (2c) depend on assumptions on
beliefs).

(a) Equivalence: If e, f ∈ L satisfy (e↔ f) ∈1 ω for all ω ∈ Ω, then (βi(e)↔
βi(f)) ∈1 ω for all ω ∈ Ω.

(b) Let Monotonicity be assumed for player i. If e, f ∈ L satisfy (e→ f) ∈1 ω
for all ω ∈ Ω, then (βi(e)→ βi(f)) ∈1 ω for all ω ∈ Ω.

(c) Let the Kripke property be assumed for player i. Then, βi(e) ∈1 ω for any
(e, ω) ∈ L × Ω with the following condition: if ω′ ∈ Ω satisfies f ∈1 ω

′ for
all f ∈ L with βi(f) ∈1 ω, then e ∈1 ω

′.

3. Depending on assumptions on beliefs, each ω ∈ Ω contains any instance of the
following expressions.

(a) Necessitation: βi(S).

(b) λ-Conjunction: ((
∧
e∈E βi(e))→ βi(

∧
E)) with 0 < |E| < λ.

(c) Consistency: (βi(e)→ (¬βi)(¬e)).
(d) Truth Axiom: (βi(e)→ e).

(e) Positive Introspection: (βi(e)→ βiβi(e)).

(f) Negative Introspection: ((¬βi)(e)→ βi(¬βi)(e)).

First, Condition (1a) states that each ω ∈ Ω describes a corresponding nature
state s in a well-defined manner. Also, ω contains those nature events E ∈ Aκ(S)
that are true at s (i.e., s ∈ E). Conditions (1b) through (1d) are logical requirements
on each ω ∈ Ω (recall Proposition 3 for each ω∗ ∈ Ω∗).

Second, Condition (2a) requires that if two expressions e and f are equivalent
in the sense that every ω contains (e ↔ f), then expressions βi(e) and βi(f) are
equivalent in the same sense. This condition allows one to define the players’ belief
operators in a way such that if two expressions e and f correspond to the same event
then the events associated with the beliefs in e and f are the same.
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Third, Conditions (2b), (2c), and (3) describe how states Ω encode properties
of beliefs. Corollary 1 has provided related characterizations for Consistency and
Negative Introspection for Ω∗.

Now, I restate the terminal space Ω∗ as the largest belief-closed set.

Theorem 2 (Ω∗ as the Largest Belief-Closed Set). The set Ω∗ constructed in Section
3 is the largest belief-closed set of descriptions. Namely, for any belief-closed set Ω,

there is a (non-redundant and minimal) belief space
−→
Ω such that its description map

D−→
Ω

:
−→
Ω →

−→
Ω∗ is an inclusion map and thus Ω ⊆ Ω∗.

Two remarks on Theorem 2 are in order. First, Theorem 2 restates the terminal

space
−→
Ω∗ as the largest belief-closed set irrespective of properties of beliefs. In particu-

lar, in the category of ℵ0-knowledge spaces in which each player’s knowledge operator
is induced by a partitional possibility correspondence, Theorem 2 formally proves that
Aumann (1999)’s canonical space can be taken as a terminal ℵ0-knowledge space in
this category, contrary to the conjecture of Heifetz and Samet (1998b, Section 6).

Second, the two constructions of a terminal belief space in Theorems 1 and 2
have some analogies with the following two constructions of a terminal type space.
The first is Heifetz and Samet (1998b), in which a terminal type space consists of
belief hierarchies induced by some type profile of some type space. This corresponds

to the construction of Theorem 1, where each state in
−→
Ω∗ is a profile of the players’

belief hierarchies (precisely, a description) induced by some state of some belief space.
The second is Brandenburger and Dekel (1993), in which, using the terminology of
this paper, a terminal type space is the largest “belief-closed” set of coherent belief

hierarchies. In Theorem 2, each state in
−→
Ω∗ represents the players’ coherent belief

hierarchies, and Ω∗ is the largest belief-closed set in the sense of Definition 9.46

5 Applications to Other Forms of Beliefs

Section 3 has demonstrated that a terminal belief space exists when the players’
beliefs are represented by their belief operators and when an infinite regular cardinal
κ determines the depth of reasoning through the specification of a domain as a κ-
algebra. The framework of this paper (especially, the existence and characterizations
of a terminal belief space) applies to richer forms of beliefs such as probabilistic beliefs
because probabilistic beliefs are represented by p-belief operators on a κ-algebra.

46Two remarks for the expert reader familiar with the technical details of Brandenburger and
Dekel (1993): First, the definition of a coherent belief hierarchy here is stronger than the one in
the type space literature. In Brandenburger and Dekel (1993), a belief hierarchy (consisting of
all finite-level beliefs) is coherent if no finite levels of beliefs contradict with each other (by their
topological assumption, such coherent belief hierarchies extend to countable levels). In contrast,
here, each belief hierarchy is of depth less than κ, and no different levels of the belief hierarchy
contradicts with each other. Second, in Brandenburger and Dekel (1993), belief closure is defined
by the iterations of mutual certainty (known as “common certainty of coherency” in the literature).
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Section 5.1 constructs a terminal space for countably-additive, finitely-additive,
and non-additive (not-necessarily-additive) beliefs. The framework nests, for exam-
ple, Heifetz and Samet (1998b), Meier (2006), and Pintér (2012), and establishes
the existence of a terminal non-additive belief space irrespective of any continuity
property on beliefs.47 The terminal countably-additive belief space can also be re-
constructed as belief hierarchies of all finite levels, consistently with the previous
literature (Proposition 4).

The Supplementary Appendix discusses further applications. Appendix D.1 dis-
cusses a terminal space for conditional probability systems (CPSs) (Battigalli and
Siniscalchi, 1999; Guarino, 2017). In Appendix D.2, players’ knowledge and qualita-
tive beliefs are indexed by time (Battigalli and Bonanno, 1997). One can also combine
knowledge and probabilistic beliefs (Meier, 2008). Appendix D.3 briefly discusses fur-
ther possible applications, namely, terminal knowledge-unawareness, preference, and
expectation spaces.

5.1 Terminal Probabilistic-Belief Space

I formulate a probabilistic-belief space in terms of p-belief operators using the equiva-
lence between a type mapping and p-belief operators established by Samet (2000). To
study probabilistic beliefs, throughout this subsection, let κ = ℵ1 so that the under-
lying state space (Ω,D) of a belief space is a measurable space. Denote by ∆(Ω) the
set of countably-additive probability measures on (Ω,D). Let D∆ be the ℵ1-algebra
on ∆(Ω) generated by {{µ ∈ ∆(Ω) | µ(E) ≥ p} ∈ P(∆(Ω)) | (E, p) ∈ D × [0, 1]} as
in Heifetz and Samet (1998b). I define a probabilistic-belief space as follows.

Definition 10 (Probabilistic-Belief Space). A probabilistic-belief space of I on (S,S)

is a tuple
−→
Ω := 〈(Ω,D), (Bp

i )(i,p)∈I×[0,1],Θ〉 with the following properties.

1. (Ω,D) is an ℵ1-algebra and the map Θ : (Ω,D)→ (S,Aℵ1(S)) is measurable.

2. Player i’s p-belief operators Bp
i : D → D satisfy the properties below. For each

E ∈ D, Bp
i (E) is the event that player i p-believes E, i.e., she believes that the

event E has occurred with probability at least p.

(a) Non-Negativity: B0
i (·) = Ω.

(b) p-Regularity: If pn ↑ p then Bpn
i (·) ↓ Bp

i (·).
(c) Monotonicity: If E ⊆ F then Bp

i (E) ⊆ Bp
i (F ).

(d) Normalization: B1
i (Ω) = Ω.

47Heifetz and Samet (1998b) employ a product of players’ type sets while this paper does a single
non-product state space Ω. If each player is always “certain” of her beliefs (see Definition 10), then
the non-product terminal belief space is isomorphic to the product of nature states and players’ type
spaces (Mertens and Zamir, 1985). These remarks also apply to a terminal space for conditional
probability systems (CPSs) in Appendix D.1.

36



(e) Super-additivity: Bp
i (E ∩ F ) ∩Bq

i (E ∩ (¬F )) ⊆ Bp+q
i (E) for p+ q ≤ 1.

(f) Sub-additivity: (¬Bp
i )(E) ∩ (¬Bq

i )(F ) ⊆ (¬Bp+q
i )(E ∪ F ) for p+ q ≤ 1.

(g) Continuity-from-above: If En ↓ E and E ∈ D then Bp
i (En) ↓ Bp

i (E).

(h) Continuity-from-below: If En ↑ E and E ∈ D thenBp
i (E) =

⋂
r∈N:p− 1

r
≥0

⋃
n∈NB

p− 1
r

i (En).

(i) Certainty-of-Beliefs: If [mBi(ω)] ⊆ E, then ω ∈ B1
i (E), where

[mBi(ω)] := (
⋂

(p,E)∈[0,1]×D
ω∈Bpi (E)

Bp
i (E)) ∩ (

⋂
(p,E)∈[0,1]×D
ω∈(¬Bpi )(E)

(¬Bp
i )(E)).

In a probabilistic-belief space, player i’s p-belief operators induce her type mapping
mBi : (Ω,D)→ (∆(Ω),D∆), a measurable map defined by

mBi(ω)(E) := sup{p ∈ [0, 1] | ω ∈ Bp
i (E)} for each (ω,E) ∈ Ω×D.

At each state ω, a countably-additive probability measure mBi(ω) represents i’s beliefs
at that state. Since mBi is measurable, it reproduces the original p-belief operators:

Bp
i (E) = {ω ∈ Ω | mBi(ω)(E) ≥ p} ∈ D for each E ∈ D.

Conditions (2), slightly different from Samet (2000), axiomatize type mappings.
Conditions (2a) and (2b) guarantee that the map mBi is well-defined, irrespective of
properties of probabilistic beliefs. By (2c), each mBi(ω) is monotonic: E ⊆ F implies
mBi(ω)(E) ≤ mBi(ω)(F ). Condition (2d) is a normalization: mBi(·)(Ω) = 1. Thus,
(2a)-(2d) yield non-additive beliefs (or capacities).

By (2e), each mBi(ω) is super-additive: mBi(ω)(E ∩ F ) + mBi(ω)(E ∩ (¬F )) ≤
mBi(ω)(E). Note that (2a) and (2e) imply (2c). By (2f), each mBi(ω) is sub-additive:
mBi(ω)(E ∪ F ) ≤ mBi(ω)(E) + mBi(ω)(F ). Thus, (2a)-(2f) yield finitely-additive
(both super-additive and sub-additive) beliefs.

Condition (2g) guarantees that each mBi(ω) is continuous from above: En ↓ E
implies mBi(ω)(En) → mBi(ω)(E). Condition (2h) guarantees that each mBi(ω) is
continuous from below : En ↑ E implies mBi(ω)(En) → mBi(ω)(E). By (2g) or (2h),
a finitely-additive probability measure mBi(ω) becomes countably additive. I have
presented both (2g) and (2h) to accommodate non-additive beliefs.

Condition (2i) is the introspective property that player i is certain of her own
beliefs. The set [mBi(ω)] consists of states ω′ that player i cannot distinguish from
ω in that [mBi(ω)] = {ω′ ∈ Ω | mBi(ω

′) = mBi(ω)}. Thus, player i is certain of her
beliefs in that she believes E with probability one if [mBi(ω)] implies (i.e., is a subset
of) E. Especially, Bp

i (E) ⊆ B1
iB

p
i (E) and (¬Bp

i )(E) ⊆ B1
i (¬B

p
i )(E) hold: if player

i p-believes (does not p-believe) an event E, then she believes with probability one
that she p-believes (does not p-believe) the event E.

A (probabilistic belief) morphism from
−→
Ω to

−→
Ω′ is a measurable map ϕ : (Ω,D)→

(Ω′,D′) satisfying: (i) Θ = Θ′◦ϕ; and (ii) Bp
i (ϕ

−1(·)) = ϕ−1(B′pi (·)) for all (i, p) ∈ I×
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[0, 1]. A probabilistic-belief space
−→
Ω∗ of I on (S,S) is terminal if, for any probabilistic-

belief space
−→
Ω of I on (S,S), there is a unique morphism ϕ :

−→
Ω →

−→
Ω∗.

I show that a terminal probabilistic-belief space exists. One can also extend it to
various notions of beliefs (e.g., non-additive beliefs and finitely-additive beliefs) by
dropping corresponding conditions in Definition 10 (2).

Corollary 2 (Terminal Probabilistic-Belief Space). There exists a terminal probabilistic-

belief space
−→
Ω∗ of I on (S,S).

In the construction of the terminal belief space for a generic class of belief spaces
in Section 3, the set L = LIκ(Aκ(S)) of expressions is infinitary (i.e., involves infinite
conjunctions) when an infinite regular cardinal κ satisfies κ > ℵ0. Each belief hier-

archy in the terminal space
−→
Ω∗ in Corollary 2 consists of all countable-level beliefs.

In contrast, each type of a terminal type space in the literature (e.g., Brandenburger
and Dekel, 1993; Heifetz and Samet, 1998b; Mertens and Zamir, 1985) is a belief
hierarchy consisting of all finite-level beliefs.

I show that the terminal probabilistic-belief space can be constructed when one
restricts attention to all finite-level belief hierarchies. The intuition is that, by the
continuity (countable-additivity) of beliefs, all finite-level belief hierarchies (that can
be attained by some state of some belief space) uniquely extend to countable levels.

To that end, for the rest of this subsection, let (κ, λ) = (ℵ1,ℵ0). Recalling Defini-
tion 5 and Remark 3 in Section 3, this means that I consider λ-expressions LIλ(Aκ(S)):
syntactic formulas that express nature and finite-level interactive beliefs. Applying
the construction of a terminal space in Section 3 while the language is restricted to
LIλ(Aκ(S)), the proof of Lemma 1 implies that {[e] ∈ D∗ | e ∈ LIλ(Aκ(S))} is an
algebra on Ω∗. I show below that the smallest σ-algebra including this set is D∗.

Proposition 4 (Extesion of Finitary Language). D∗ = σ({[e] ∈ D∗ | e ∈ LIλ(Aκ(S))}).

Proposition 4 implies that the terminal probabilistic-belief space can be con-
structed when the language is restricted to finite-level beliefs LIλ(Aκ(S)). The players’
countably-additive beliefs are well-defined on D∗ because a countably-additive prob-
ability measure defined on the algebra (the generator of the right-hand side) admits
a unique extension to the generated σ-algebra (the left-hand side, which is D∗).

Below, I provide an informal discussion of the fact that the terminal probabilistic-
belief space can be constructed when the language is restricted to finite-level beliefs

LIλ(Aκ(S)). Take any probabilistic-belief space
−→
Ω . On the one hand, Section 3 shows

that a unique morphism D :
−→
Ω →

−→
Ω∗ associates, with each state ω, the corresponding

nature state and the players’ belief hierarchies that describe all countable-level inter-
active beliefs at ω. On the other hand, the hierarchical construction of a terminal type

space in the literature (denote it by
−→
Ω∗∗) implies that there exists a unique morphism

h :
−→
Ω →

−→
Ω∗∗ which associates, with each state ω ∈ Ω, the corresponding nature

state and the profile of the players’ belief hierarchies (each player i’s first-order belief
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mBi(ω) ◦Θ−1 over S, each player’s second-order belief, and so on) of all finite levels.

Since both spaces are terminal, there exists a unique isomorphism ϕ :
−→
Ω∗ →

−→
Ω∗∗

such that h = ϕ ◦ D. Hence, ϕ strips away transfinite levels of beliefs from D(ω)
to generate the profile of the players’ finite-level belief hierarchies h(ω) = ϕ(D(ω))
associated with D(ω).

Corollary 2 and Proposition 4 imply that one can separately ask the question of
whether there exists a terminal space (Corollary 2) and that of whether the terminal
space consists of all finite-level beliefs (Proposition 4). The continuity (countable-
additivity) of probabilistic beliefs has to do with the latter question, not the former.48

6 Game-Theoretic Applications

This section shows that the specification of an infinite (regular) cardinal κ, which
determines depth of reasoning κ, is also important in game-theoretic applications.
Section 6.1 introduces the notion of common belief into a belief space, and demon-
strates that, in a category of belief spaces in which common belief is well-defined, a
terminal space exists. Section 6.2 defines strategic games with ordinal payoffs.

Section 6.3 characterizes iterated elimination of strictly dominated actions (IESDA)
as an implication of common belief in rationality in a terminal qualitative-belief space
for an arbitrary strategic game with ordinal payoffs. The subsection also provides an
example of a game in which a unique prediction under IESDA requires an arbitrarily
long process of IESDA.49 Hence, in a situation in which the players reason about their
actions in a given game, one would need to fix an appropriate level κ to accommodate
all possible reasoning about the given game.

Section 6.4 shows that common belief in weak-dominance rationality characterizes
the iterated elimination procedure first studied by Börgers (1993) for an arbitrary
strategic game with ordinal payoffs.50

6.1 Common Belief

I show that a terminal space exists in a class of belief spaces with common belief.
To that end, I incorporate the notion of common belief, irrespective of a choice of κ

48Corollary 2 and Proposition 4 imply that the previous non-existence result on a terminal quali-
tative belief space does not have to do with the continuity of beliefs, contrary to the claims of the
previous literature (e.g., Fagin, 1994; Fagin, Halpern, and Vardi, 1991; Fagin et al., 1999; Heifetz
and Samet, 1998a,b, 1999).

49The example in Section 6.3 involves infinite action sets. Appendix E.1 provides an example of
a strategic game with finitely many actions in which infinitely many players interactively reason so
that a unique prediction under IESDA requires an arbitrarily long elimination process.

50First, Appendix E.2 studies a strategic game in which a unique prediction requires an arbitrarily
long elimination process. Second, Appendix E.3 contrasts belief and knowledge by showing that
common knowledge of weak-dominance rationality characterizes the pure-strategy version of the
iterated elimination procedure first studied by Stalnaker (1994).
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and properties of beliefs, following Fukuda (2020). The definition of common belief
does not resort to the chain of mutual beliefs. Thus, one can analyze players who fail
logical reasoning (e.g., Monotonicity or λ-Conjunction) or players who reason only
about finite levels of interactive beliefs (i.e., κ = ℵ0).

Fix a non-empty set I of players, and let κ be an infinite regular cardinal with
κ > |I|. By this assumption, in any κ-belief space 〈(Ω,D), (Bi)i∈I ,Θ〉, one can define
the mutual belief operator BI : D → D by BI(·) :=

⋂
i∈I Bi(·).

An event E is a common basis if everybody believes any logical implication of
E whenever E is true: E ⊆ F implies E ⊆ BI(F ) (Fukuda, 2020). If the mutual
belief operator BI satisfies Monotonicity, then E is a common basis if(f) it is publicly-
evident: E ⊆ BI(E). Denote by JI the collection of common bases.

An event E is common belief at a state ω if there is a common basis F ∈ JI which
is true at ω and which implies the mutual belief in E: ω ∈ F ⊆ BI(E). If BI satisfies
Monotonicity, then this definition of common belief reduces to Monderer and Samet
(1989).

The common belief in E at a state ω implies the chain of mutual beliefs in E
at that state: at ω, everybody believes E (i.e., ω ∈ BI(E)), everybody believes that
everybody believes E (i.e., ω ∈ BIBI(E)), and so on ad infinitum. The converse holds
(formally, the common belief in E reduces to

⋂
n∈NB

n
I (E)) when, for example, BI

satisfies Monotonicity and ℵ1-Conjunction as in a possibility correspondence model
(Fukuda, 2020).51

A κ-belief space with a common belief operator is a tuple
−→
Ω := 〈(Ω,D), (Bi)i∈I , C,Θ〉

such (i) that 〈(Ω,D), (Bi)i∈I ,Θ〉 is a κ-belief space (satisfying given properties of be-
liefs) and (ii) that C : D → D satisfies C(E) = max{F ∈ JI | F ⊆ BI(E)} for
each E ∈ D, where “max” is taken with respect to the set inclusion.52 I show that a
terminal space exists within the class of κ-belief spaces with a common belief operator
irrespective of κ and properties of beliefs.

Corollary 3 (Terminal Belief Space with a Common Belief Operator). There exists

a terminal κ-belief space
−→
Ω∗ of I on (S,S) with a common belief operator.

6.2 Strategic Games with Ordinal Payoffs

For the rest of Section 6, I consider strategic games with ordinal payoffs. A strategic
game with ordinal payoffs is a tuple Γ := 〈(Ai)i∈I , (<i)i∈I〉 satisfying the following:
each Ai is player i’s (non-empty) action set, and each <i is player i’s (complete and
transitive) preference relation on A :=

∏
i∈I Ai. Denote by ∼i and �i the indiffer-

ence and strict preference relations, respectively. For ease of exposition, sometimes

51Also, in a probabilistic-belief space (recall Definition 10), let BpI (·) :=
⋂
i∈I B

p
i (·) be the mutual

p-belief operator. It can be seen that the common p-belief operator Cp coincides with the iteration
of mutual p-beliefs: Cp(·) =

⋂
n∈N(BpI )n(·).

52Then, we have C(E) = {ω ∈ Ω | ω ∈ F ⊆ BI(E) for some F ∈ JI} for each E ∈ D.
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I introduce a strategic game by specifying the players’ payoff functions, that is, as
a tuple Γ := 〈(Ai)i∈I , (ui)i∈I〉, where each player’s payoff function ui represents her
underlying preferences <i.

Since the players reason about their actions, for the rest of Section 6, I consider
S = A and an infinite regular cardinal κ with max(|I|, |A|) < κ for a given strategic
game Γ.53 In order for each player to be able to reason about her own actions, I
assume {ai} × A−i ∈ S for each i ∈ I and ai ∈ Ai. Since κ > |A|, the assumption
amounts to Aκ(S) = P(S).

In a κ-belief space (with a common belief operator) 〈(Ω,D), (Bi)i∈I , C,Θ〉, the
measurable map Θ is decomposed into Θ = (Θi)i∈I , where Θi : Ω→ Ai is interpreted
as player i’s (behavioral) strategy: it associates, with each state ω, the corresponding
action Θi(ω) ∈ Ai.

For each ai ∈ Ai, Θ−1
i ({ai}) = J{ai} × A−iK−→Ω ∈ D is the event that player i

plays ai. Player i is certain of her own strategy if Θ−1
i ({ai}) ⊆ Bi(Θ

−1
i ({ai})) for all

ai ∈ Ai.
For each (a′i, ai) ∈ A2

i , define [a′i �i ai] := {a−i ∈ A−i | (a′i, a−i) �i (ai, a−i)} and
Ja′i �i aiK−→Ω := (Θ−i)

−1([a′i �i ai]) ∈ D. The set Ja′i �i aiK−→Ω is the event that player
i strictly prefers a′i to ai given the other players’ strategies. The sets [a′i <i ai] and
Ja′i <i aiK−→Ω are similarly defined.

6.3 Iterated Elimination of Strictly Dominated Actions

This subsection studies the solution concept of iterated elimination of strictly domi-
nated actions (IESDA) in a terminal belief space as an implication of common belief
in rationality for a game with ordinal payoffs and qualitative beliefs.

6.3.1 Common Belief in Rationality

I start with defining the notion of rationality, and show that: within a class of belief
spaces with common belief, (i) players’ rationality is well-defined in the terminal
space, and (ii) common belief in rationality in any given belief space is preserved in
the terminal space. Especially, the terminal space itself characterizes the solution
concept of IESDA as an implication of common belief in rationality.

Definition 11 (Rationality). Let
−→
Ω be a belief space. Player i is rational (e.g.,

Bonanno, 2008; Chen, Long, and Luo, 2007) at a state ω ∈ Ω if, for no action a′i, she
believes at ω playing a′i is strictly better than Θi(ω) given the opponents’ strategies:

ω ∈ Bi(Ja′i �i Θi(ω)K−→
Ω

).

Denote by RATi (or RAT
−→
Ω
i ) the set of states at which player i is rational. Likewise,

let RATI :=
⋂
i∈I RATi.

53Recalling the technical preliminaries in Section 2.1, one can always take the successor cardinal
κ = (max(|I|, |A|))+.

41



It can be seen that each player’s rationality RAT
−→
Ω
i is a well-defined event, as

RAT
−→
Ω
i =

⋂
ai∈Ai

((Θ−1
i ({ai}))c ∪

⋂
a′i∈Ai

(¬Bi)(Ja′i �i aiK−→Ω )) ∈ D.

Moreover, a morphism preserves the notion of rationality. If ϕ :
−→
Ω →

−→
Ω′ is a mor-

phism, then ϕ−1(Ja′i �i aiK−→Ω′) = Ja′i �i aiK−→Ω and ϕ−1(RAT
−→
Ω′

i ) = RAT
−→
Ω
i . Especially,

D−1(C∗(RAT
−→
Ω∗

I )) = C(RAT
−→
Ω
I ). Thus, for any state ω∗ in the terminal space

−→
Ω∗ and

for any state ω ∈ Ω of a belief space
−→
Ω with ω∗ = D(ω), the players commonly

believe their rationality at ω in the belief space
−→
Ω iff they commonly believe their

rationality at ω∗ = D(ω) in the terminal space.
Next, I define a process of IESDA, following Chen, Long, and Luo (2007). To

that end, I start with the notion of strictly dominated actions. Since this subsection
studies an arbitrary strategic game with ordinal payoffs, it only allows for elimination
of actions that are dominated by pure actions (see also Chen, Long, and Luo, 2007;
Dufwenberg and Stegeman, 2002).

Definition 12 (Strict Dominance). Let 〈(Ai)i∈I , (<i)i∈I〉 be a strategic game. Let
X−i be a non-empty subset of the set A−i of the actions other than player i. An
action ai ∈ Ai is strictly dominated given X−i if there exists an action âi ∈ Ai such
that (âi, x−i) �i (ai, x−i) for all x−i ∈ X−i.
Definition 13 (IESDA). A process of iterated elimination of strictly dominated ac-
tions (IESDA) is an ordinal sequence of Aα (with |α| ≤ |A|) defined as follows: (i)
A0 = A; (ii) for a successor ordinal α = β + 1, Aα is obtained by eliminating at least
one action ai ∈ Aβi which is strictly dominated given Aβ−i; and (iii) for a non-zero limit
ordinal α, Aα =

⋂
β<αA

β. Since (Aα)α is weakly decreasing, let α (with |α| ≤ |A|) be

the smallest ordinal with Aα = Aα+1. An action profile a ∈ A survives the process of
IESDA if a ∈ AIESDA := Aα. Call AIESDA the terminal set of the process of IESDA.

A process of IESDA is order-independent, that is, the terminal set AIESDA is
uniquely determined (Chen, Long, and Luo, 2007).54

Below, for a given strategic game, I characterize IESDA as an implication of
common belief in rationality in κ-belief spaces in which κ > max(|I|, |A|) and in
which the players have correct common belief in rationality : C(RATI) ⊆ RATI .

55

54I adopt this order-independent elimination procedure also to compare it with other order-
independent elimination procedures in Section 6.4 and Appendix E.3.

55Proposition 5 also holds for each of the following three cases. First, if some player’s belief
operator Bi satisfies Truth Axiom, then common belief satisfies Truth Axiom. Second, if each Bi
satisfies the Kripke property and Consistency and if each player is certain of her own strategy (i.e.,
Θ−1
i ({ai}) ⊆ Bi(Θ

−1
i ({ai}))), then (each player correctly believes her own rationality and conse-

quently) the players have correct common belief in rationality. Third, an alternative characterization
in terms of rationality and common belief in rationality (formally, RATI ∩ C(RATI)), which does
not require correct common belief in rationality, also holds when each Bi satisfies Monotonicity and
ℵ0-Conjunction.
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Proposition 5 (IESDA). Fix a strategic game and κ > max(|I|, |A|).

1. Take any κ-belief space
−→
Ω in which the players have correct common belief in

rationality. If ω ∈ C(RATI) then Θ(ω) ∈ AIESDA.

2. For any a ∈ AIESDA, there exist a κ-belief space
−→
Ω and a state ω ∈ Ω such

that: the players have correct common belief in rationality; Θ(ω) = a; and that
ω ∈ C(RATI).

The proof is similar to that of Fukuda (2020, Theorem 3) and is omitted. Part (1)
states that, for any given κ-belief space, the players’ actions at states at which they
have common belief in rationality survive any process of IESDA but may not necessar-
ily exhaust the entire predictions AIESDA. Part (2) states that the entire predictions
AIESDA can be obtained if all belief spaces in the given category are considered.

Next, I restate the epistemic characterization of Proposition 5 on the terminal

κ-belief space
−→
Ω∗ (in which the players have correct common belief in rationality)

instead of considering all belief spaces in the given category. In the terminal κ-belief

space
−→
Ω∗, (i) for any κ-belief space

−→
Ω with ω ∈ C(RAT

−→
Ω
I ), D−→

Ω
(ω) ∈ C∗(RAT

−→
Ω∗

I ) and
Θ∗(D−→

Ω
(ω)) = Θ(ω) ∈ AIESDA; and (ii) conversely, for any a ∈ AIESDA, there exists

a state ω∗ ∈ Ω∗ with a = Θ∗(ω∗) and ω∗ ∈ C∗(RAT
−→
Ω∗

I ). The first part states that
for any state of a belief space in which the players have (correct) common belief in
rationality, they have (correct) common belief in rationality and their actions survive
any process of IESDA in the corresponding state of the terminal space. The second
part says that, for any action profile a ∈ AIESDA, there exists a state in the terminal
space at which the players, who commonly believe their rationality, take the given
actions. Thus, it is sufficient to consider the terminal space.

Corollary 4 (IESDA on the Terminal Space). Fix any strategic game and κ >

max(|I|, |A|). There exists a terminal κ-belief space
−→
Ω∗ in which the players have

correct common belief in rationality. On the terminal space,

AIESDA = {a ∈ A | a = Θ∗(ω∗) for some ω∗ ∈ C∗(RATI)}.

On the one hand, the terminal κ-belief space can provide the exact characterization
of IESDA as an implication of common belief in rationality. On the other hand, the
second part of the corollary is indeed equivalent to Proposition 5.

Corollary 4 also clarifes properties of players’ beliefs under which common belief
in rationality characterizes IESDA, the direction which has not been explored be-
fore. First, one assumption is correct common belief in rationality, as Proposition
5 or Corollary 4 may not necessarily hold without the restriction that the players
have correct common belief in rationality (Fukuda, 2020). Second, another epistemic
characterization of IESDA is rationality and common belief in rationality when the
players’ belief operators satisfy Monotonicity and ℵ0-Conjunction (see footnote 55).
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Proposition 5 and Corollary 4 hold in the category of belief spaces in which the play-
ers’ beliefs satisfy these logical properties. Without these logical properties of beliefs,
the characterization may not necessarily hold.

6.3.2 Example of a Game with a Transfinite Process of IESDA

To conclude the subsection, for an arbitrary limit ordinal α, I provide an example
of a strategic game in which a unique prediction under IESDA is obtained after
α + 1 iterations. Hence, an epistemic analysis of a strategic game may necessitate
appropriately choosing an infinite regular cardinal κ with κ > max(|I|, |A|).

Let α be a non-zero limit ordinal. Define a strategic game 〈(Ai)i∈I , (ui)i∈I〉 (for
ease of exposition, in terms of payoff functions) as follows. Let Ai := α + 2 (i.e.,
Ai = {0, 1, . . . , α, α + 1}) be the set of actions available to i ∈ I := {1, 2}. Define i’s
payoff function ui : Ai × A−i → R as

ui(ai, a−i) :=


0 if ai < a−i or ai = a−i 6= α + 1

2 if a−i < ai 6= α + 1

1 if ai = α + 1

.

Table 1 in the Introduction depicts ui(ai, a−i) when α is the least infinite ordinal (i.e.,
the set of non-negative integers). Action α+ 1 always yields a payoff of 1 irrespective
of the opponent’s action. For any other action, player i obtains a payoff of 2 if
her action ai is (strictly) higher than the opponent’s, and she obtains a payoff of 0
otherwise.

Any process of IESDA yields a unique action profile (a1, a2) = (α+ 1, α+ 1). For
instance, the process of eliminating all strictly dominated actions at each step leads
to the unique prediction (α + 1, α + 1) after the α + 1 round of elimination.

The rest of this subsection constructs a belief space 〈(Ω,D), (Bi)i∈I , C,Θ〉 in
which common belief in rationality is attained exactly as the α + 1 iterations of
mutual beliefs in rationality: C(RATI) =

⋂
β:1≤β≤α+1B

β(RATI) while C(RATI) (⋂
β:1≤β≤αB

β
I (RATI).

56

First, let (Ω,D) := (α + 3,P(Ω)). Second, define each Bi as (i) Bi(E) := E
if E ∈ {∅, {α + 2},Ω}; and (ii) Bi(E) := E \ {min(E)} otherwise.57 Each player
does not believe a contradiction of the form ∅, always believes a tautology of the
form Ω, and believes {α + 2} at α + 2. She believes any other event E at any state
in E except at minE. Note that Bi satisfies Truth Axiom and Monotonicity but

56If each player’s belief operator satisfies Monotonicity and ℵ1-Conjunction, then the least infinite
chain of mutual beliefs

⋂
n∈NB

n
I (RATI) already converges to common belief C(RATI). Two remarks

are in order. First, even in such a model, the model itself may need to be defined on a κ-algebra
(with κ > |A|) to accommodate the α+ 1 iterations of mutual beliefs to reflect transfinite processes
of IESDA. Second, in this example, common belief is not characterized by all the finite iterations of
mutual beliefs as the players’ belief operators violate ℵ1-Conjunction.

57As Ω is an ordinal, min(E) is well-defined for any non-empty subset E of Ω.
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fails ℵ0-Conjunction. Third, the common belief (or, common knowledge) operator
C : D → D, by definition, satisfies: (i) C(Ω) = Ω; (ii) C(E) = {α + 2} if α + 2 ∈ E
and E 6= Ω; and (iii) C(E) = ∅ if α + 2 6∈ E. Fourth, define Θ = (Θi)i∈I as: (i)
Θi(ω) := α + 1 if ω 6= 0; and (ii) Θi(0) := 0.

Each player is rational at each state except at 0: RATi = Ω \ {0}. To find
mutual beliefs in rationality, for any ordinal β ≤ α + 2, denote by [β, α + 2] the
set of ordinals γ with β ≤ γ ≤ α + 2. Then, for any ordinal β with 1 ≤ |β| < κ,
Bβ
I (RATI) = [β, α + 2] if β < α + 1, and Bβ

I (RATI) = {α + 2} if β ≥ α + 1. Hence,
C(RATI) =

⋂
β:1≤β≤α+1B

β
I (RATI), while C(RATI) (

⋂
β:1≤β≤αB

β
I (RATI). That is,

the chain of mutual beliefs in rationality converges to common belief in rationality
at the α + 1-th round. Common belief in rationality C(RATI) captures IESDA:
Θ(α + 2) = (α + 1, α + 1) ∈ AIESDA. The terminal κ-belief space of a category
to which the example belief space belongs contains the belief hierarchies that the
example belief space induces.

6.4 Iterated Elimination of Börgers Dominated Actions

This subsection provides an epistemic characterization of a pure-strategy dominance
first studied by Börgers (1993): an action is Börgers dominated if it is weakly domi-
nated by some pure action when opponents’ play is restricted to arbitrary non-empty
subsets of their actions. The idea behind Börgers dominance is that players’ prefer-
ences (that represent their von Neumann-Morgenstern utility functions) over game
outcomes are ordinal. He assumes that players’ ordinal preferences are “commonly
certain” (in the informal sense), each player forms probabilistic beliefs about the
opponents’ choices, and that each player chooses a pure action that maximizes her
expected utility. He shows that, in this setting, a pure action is rationalized iff it
is not dominated. He then studies action profiles that are consistent with common
belief in rationality.

The subsection starts with the definition of the solution concept.

Definition 14 (Börgers Dominance). Let 〈(Ai)i∈I , (<i)i∈I〉 be a strategic game.

1. Let X−i be a non-empty subset of the set A−i of the actions other than player
i. An action ai ∈ Ai is weakly dominated given X−i if there exists âi ∈ Ai such
that (i) (âi, x−i) <i (ai, x−i) for all x−i ∈ X−i; and that (ii) (âi, x̂−i) �i (ai, x̂−i)
for some x̂−i ∈ X−i.

2. An action ai ∈ Ai is Börgers-dominated (henceforth, B-dominated) if, for every
non-empty subset X−i ⊆ A−i, the action ai is weakly dominated given X−i.

Definition 15 (IEBA). A process of iterated elimination of B-dominated actions
(IEBA) is an ordinal sequence of Aα (with |α| ≤ |A|) defined as follows: (i) A0 = A;
(ii) for a successor ordinal α = β + 1, Aα is obtained by eliminating at least one
action ai ∈ Aβi which is B-dominated given Aβ−i; and (iii) for a non-zero limit ordinal
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α, Aα =
⋂
β<αA

β. Since (Aα)α is weakly decreasing, let α (with |α| ≤ |A|) be the

smallest ordinal with Aα = Aα+1. An action profile a ∈ A survives the process of
IEBA if a ∈ AIEBA := Aα. Call AIEBA the terminal set of the process of IEBA.

Note that, at the (β + 1)-th step of a process of IEBA, dominating strategies are
not necessarily restricted to Aβi . With this in mind:

Lemma 5 (Order-Independence of IEBA). A process of IEBA is order-independent,
that is, AIEBA is uniquely determined.

I characterize the solution concept of IEBA as an implication of common belief in
weak-dominance rationality when players’ qualitative beliefs satisfy Consistency and
the Kripke property.

Definition 16 (Weak-Dominance Rationality). Let
−→
Ω be a belief space. Player i is

weak-dominance rational at a state ω ∈ Ω if, for no action ai ∈ Ai,

ω ∈ Bi(Jai <i Θi(ω)K−→
Ω

) ∩ (¬Bi)(¬Jai �i Θi(ω)K−→
Ω

).

Denote by WDRATi (or WDRAT
−→
Ω
i ) the set of states at which player i is weak-

dominance rational. Likewise, let WDRATI :=
⋂
i∈I WDRATi.

The intended meaning of weak-dominance rationality is as follows. Player i is
weak-dominance rational at ω if, for no action ai ∈ Ai, player i believes that playing
ai is as good as playing Θi(ω) and she considers it possible that playing ai is strictly
better than playing Θi(ω).

The intended meaning is best interpreted under Consistency and the Kripke prop-
erty. Recall that bBi(ω) is the set of states that player i considers possible (the discus-
sions after Definition 1). Under Consistency and the Kripke property, player i con-
siders an event E possible if she does not believe its negation Ec (as bBi(ω)∩E 6= ∅).
Also, if player i believes an event then she considers the event possible. Thus, the
intended meaning of weak-dominance rationality is obtained. Moreover, player i is
weak-dominance rational at ω if her action Θi(ω) is not weakly dominated given the
set of actions Θ−i(bBi(ω)) she considers possible at ω.

Weak-dominance rationality is a stronger notion of rationality, i.e., WDRATi ⊆
RATi, under Consistency and Monotonicity (which is implied by the Kripke property).

In any belief space, the set WDRAT
−→
Ω
i is an event because

WDRAT
−→
Ω
i =

⋂
ai∈Ai

(Θ−1
i ({ai}))c ∪

⋂
a′i∈Ai

(
(¬Bi)(Ja′i <i aiK−→Ω ) ∪Bi(¬Ja′i �i aiK−→Ω )

) ∈ D.
Moreover, a morphism preserves weak-dominance rationality. If ϕ :

−→
Ω →

−→
Ω′ is a

morphism, then ϕ−1(WDRAT
−→
Ω′

i ) = WDRAT
−→
Ω
i . Especially, D−1(C∗(WDRAT

−→
Ω∗

I )) =
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C(WDRAT
−→
Ω
I ): if the players commonly believe their weak-dominance rationality at

ω in a given belief space
−→
Ω , then so do they at ω∗ = D(ω) in the terminal space.

The proposition below provides an epistemic characterization of IEBA in terms
of common belief in weak-dominance rationality when the players’ beliefs satisfy the
Kripke property and Consistency. The proposition generalizes the epistemic charac-
terization by Bonanno and Tsakas (2018, Theorem 1) (of a finite strategic game) to
an arbitrary strategic game.

Proposition 6 (IEBA). Fix a strategic game and κ > max(|I|, |A|).

1. Take any κ-belief space
−→
Ω in which each Bi satisfies the Kripke property and

Consistency and in which each player is certain of her own strategy: Θ−1
i ({ai}) ⊆

Bi(Θ
−1
i ({ai})). If ω ∈ C(WDRATI) then Θ(ω) ∈ AIEBA.

2. For any a ∈ AIEBA, there exist a κ-belief space
−→
Ω and a state ω ∈ Ω such that:

each Bi satisfies the Kripke property and Consistency; each player is certain of
her own strategy; Θ(ω) = a; and that ω ∈ C(WDRATI).

The proof of Proposition 6 is similar to that of Bonanno and Tsakas (2018, The-
orem 1) and is omitted.58

Three remarks are in order. First, since one can prove Proposition 6 (2) by con-
structing a possibility correspondence model in which every player’s belief satisfies
Consistency, Positive Introspection and Negative Introspection, Proposition 6 holds
with or without Positive Introspection and Negative Introspection, as long as Consis-
tency and the Kripke property are imposed.

Second, the above observation implies that AIEBA ⊆ AIESDA. For any a ∈ AIEBA

there exists a possibility correspondence model
−→
Ω such that: every player’s belief

operator satisfies Consistency, Positive Introspection, and Negative Introspection; and
that there exists a state ω ∈ C(WDRATI) at which the players commonly believe
their weak-dominance rationality and their action profile satisfies Θ(ω) = a. Since
each player’s belief satisfies Monotonicity and Consistency, WDRATi ⊆ RATi for
each i ∈ I. Also, in this model, it can be seen that each player has correct belief
in her rationality: Bi(RATi) ⊆ RATi and consequently they have correct common
belief in their rationality. Thus, it follows from Proposition 5 that a = Θ(ω) ∈ AIESDA.
Appendix E.2 provides an example of a strategic game for which (i) the converse set
inclusion does not hold and for which (ii) a unique prediction under IEBA is obtained
after α iterations for any given non-zero limit ordinal α.

Third, the epistemic characterization of IEBA may call for the failure of Truth
Axiom. Bonanno and Tsakas (2018, Section 4.2) provide such an example.

Proposition 6 is restated as:

58For the first part, one needs to extend the induction proof of Bonanno and Tsakas (2018) to
transfinite induction. For the second part, their proof works without any substantial modification.
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Corollary 5 (IEBA on the Terminal Space). Fix any strategic game and κ > max(|I|, |A|).

There exists a terminal κ-belief space
−→
Ω∗ in which each Bi satisfies the Kripke property

and Consistency and in which each player is certain of her own strategy. Then,

AIEBA = {a ∈ A | a = Θ∗(ω∗) for some ω∗ ∈ C∗(WDRATI)}.

The first part of the corollary is an implication of Theorem 1. The second part
is equivalent to the following: for any ω∗ ∈ C∗(WDRATI), Θ∗(ω∗) ∈ AIEBA; and
conversely, for any action profile a ∈ AIEBA, there exists ω∗ ∈ C∗(WDRATI) such
that a = Θ∗(ω∗). In words, an action profile a survives a process of IEBA iff a
is played at some state in the terminal belief space at which the players commonly
believe their weak-dominance rationality.

7 Comparison with the Previous Negative Results

Throughout this section, unless otherwise stated, fix an infinite regular cardinal κ.

Recall that the framework of this paper admits the category of κ-knowledge spaces
−→
Ω

in which (Ω,D) is a κ-algebra and in which each Bi is induced by a partitional possi-
bility correspondence (recall Definition 2 and its discussions). Theorem 1 constructs

a terminal κ-knowledge space
−→
Ω∗ of this category (i.e., (Ω∗,D∗) is a κ-algebra and

each B∗i is induced by a partitional possibility correspondence): for any κ-knowledge

space
−→
Ω in this category, there is a unique morphism D :

−→
Ω →

−→
Ω∗.59

This section compares the existence of a terminal κ-belief space with the previous
non-existence results (e.g., Fagin et al., 1999; Heifetz and Samet, 1998a; Meier, 2005).
Section 7.1 introduces the notion of a complete algebra. The previous non-existence
results hold in the category of belief spaces where the domain of each belief space is
a complete algebra.

Section 7.2 examines whether the domain specification of a κ-belief space
−→
Ω as

a κ-algebra may neglect any reasoning regarding the underlying states Ω. It shows
that the κ-algebra D always contains any event that corresponds to a belief hierarchy
of depth up to κ that the underlying states Ω intend to represent.

Section 7.3 shows that the terminal space
−→
Ω∗ contains all belief hierarchies of depth

up to κ. By defining the notion of a κ-rank, it shows that the terminal space attains
the highest κ-rank (which is indeed κ in a category of κ-qualitative-belief spaces).

Section 7.4 shows that, while the cardinality of a terminal λ-belief space with
λ > κ has at least as high as that of the terminal κ-belief space, the terminal λ-belief
space is redundant and is not minimal as a κ-belief space. Thus, the terminal κ-belief
space consists of all possible belief hierarchies of depth up to κ, and only up to κ.

59Also, in the category of κ-belief spaces
−→
Ω in which each Bi is induced by a serial, transitive, and

Euclidean possibility correspondence (i.e., Bi satisfies Consistency, Positive Introspection, Negative
Introspection, and the Kripke property), Theorem 1 establishes a terminal κ-belief space.
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7.1 Complete Algebras

For any given set X, call the sub-collection X of P(X) (or the pair (X,X ) itself)
a complete algebra if (i) {∅, X} ⊆ X and if (ii) X is closed under complementation
and is closed under arbitrary union and intersection. In other words, (X,X ) is a
complete algebra if it is a λ-algebra for any infinite (regular) cardinal λ. For any set
X, (X,P(X)) is a complete algebra.

In order to conveniently refer to both a κ-algebra (where κ is an infinite cardinal)
and a complete algebra, I call a complete algebra an ℵ∞-algebra. The symbol ℵ∞
(which is not a cardinal) is used only for indicating a complete algebra.60 With
this notation in mind, denote by Aℵ∞(·) the smallest complete algebra (i.e., the
intersection of all complete algebras) including a given collection. I also explicitly

call a belief space
−→
Ω an ℵ∞-belief space if the domain D is a complete algebra.

7.2 Informational Content of the Domain

For the terminal κ-belief space constructed in Section 3, the domain D∗ is generically
not the power set of the underlying states Ω∗. Does the domain D∗ have some
limitation on the representation of players’ interactive beliefs? This subsection shows

that any κ-belief space
−→
Ω can capture the belief hierarchies of depth up to κ that the

underlying states Ω intend to represent in the sense that the domain D contains the
events Dκ generated by the expressions L = Lκ.

On the one hand, the set L = Lκ represents nature states (S,S) and players’
belief hierarchies of depth up to κ in a way free from particular belief spaces. On the

other hand, in an arbitrary κ-belief space
−→
Ω , the semantic interpretation function

J·K−→
Ω

associates, with each expression e ∈ L, the corresponding event JeK−→
Ω
∈ D in

the space
−→
Ω . Thus, Dκ = {JeK−→

Ω
∈ D | e ∈ L} is the collection of events in

−→
Ω that

correspond to the nature states (S,S) and players’ belief hierarchies of depth up to

κ.61 Since Dκ ⊆ D, the given belief space
−→
Ω can capture the belief hierarchies of

depth up to κ that the underlying state space intends to represent.
This leads to the observation that any belief hierarchy of depth up to κ generated

by a given κ-belief space
−→
Ω is also generated by the κ-belief space whose domain is

restricted to Dκ. By construction, such belief space is minimal. Formally:

Remark 7 (Minimal Belief Space). If
−→
Ω is a κ-belief space in a given category,

then
−→
Ωκ := 〈(Ω,Dκ), (Bi|Dκ)i∈I ,Θ〉 is a κ-belief space in the same category with

the following properties: (i) the identity map idΩ :
−→
Ω →

−→
Ωκ is a morphism (an

60However, one can informally interpret the symbol ℵ∞ as satisfying λ < ℵ∞ for any cardinal λ,
because a complete algebra X is closed under the union (and consequently the intersection) of any
non-empty sub-collection of X with cardinality less than λ, for any cardinal λ.

61In contrast, an event E ∈ D \ Dκ, if there is any, cannot be captured by the given language L.
Such event E might be captured by a richer language, i.e., E ∈ Dλ with λ > κ.
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isomorphism iff
−→
Ω is minimal); and (ii) D−→

Ω
= D−→

Ωκ
◦ idΩ. By construction,

−→
Ωκ is

minimal: Dκ = D−1
−→
Ωκ

(D∗).

Using Remark 7, Appendix F characterizes minimality as in Friedenberg and Meier
(2011).

7.3 Belief Hierarchies of Depth up to κ

The previous subsection has shown that any κ-belief space
−→
Ω contains the belief

hierarchies of depth up to κ that the space intends to represent. For instance, starting
from a depth-zero event JEK−→

Ω
∈ D with E ∈ Aκ(S), one can consider a depth-one

event Jβi(E)K ∈ D (“player i believes E”), a depth-two event Jβjβi(E)K−→
Ω
∈ D (i.e.,

“player j believes that i believes E”), a depth-three event Jβiβjβi(E)K−→
Ω
∈ D (i.e.,

“player i believes that j believes that i believes E”), and so forth.

The particular belief space
−→
Ω , however, may not distinguish all different depths in

the following sense. For instance, if Ω is a finite set, then there exists a finite number
n such that any (n+1)-th depth event (e.g., J(βi1βi2 · · · βin+1)(E)K−→

Ω
∈ D) has already

appeared as some n-th depth event.
Throughout this subsection, let λ be an infinite regular cardinal with λ ≥ κ. This

subsection defines the κ-rank of a λ-belief space
−→
Ω . Roughly, it is the least ordinal α

such that any higher-depth event appears already as an α-depth event. The following

defines the collection Cα of α-order events and the κ-rank of the λ-belief space
−→
Ω .

Definition 17 (κ-Rank). The κ-rank of a λ-belief space
−→
Ω of I on (S,S) is the least

ordinal α with Cα = Cα+1, where the sequence (Cα)α is defined as follows:

Cα :=

Aκ({Θ
−1(E) ∈ D | E ∈ S}) = Θ−1(Aκ(S)) if α = 0

Aκ((
⋃
β<α

Cβ) ∪
⋃
i∈I

{Bi(E) ∈ D | E ∈
⋃
β<α

Cβ}) if α > 0 .

The κ-rank of a λ-belief space does not depend on a particular choice of λ ≥ κ.
The notion of κ-rank generalizes that of rank which Heifetz and Samet (1998a) define
for an ℵ∞-knowledge space on (S,P(S)). For an ℵ∞-belief space, define the HS-rank
of the belief space as in Definition 17 by substituting κ = λ = ℵ∞.

With the notion of HS-rank, Heifetz and Samet (1998a) demonstrate that there is
no terminal standard partitional knowledge space from the following two assertions.
First, a morphism preserves the HS-ranks. Second, there is a standard partitional
knowledge space with arbitrarily high HS-rank. Then, for any candidate terminal
standard partitional knowledge space, there exists a standard partitional knowledge
space with a higher HS-rank, and thus the candidate space must not be terminal.

The next proposition shows: first, a morphism preserves the κ-ranks; and second,
the κ-rank of any λ-belief space (with λ ≥ κ) is at most κ. Formally:
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Proposition 7 (κ-Rank). 1. If ϕ :
−→
Ω →

−→
Ω′ is a morphism between λ-belief spaces

−→
Ω and

−→
Ω′, then the κ-rank of

−→
Ω′ is at least as high as that of

−→
Ω .

2. The κ-rank of any λ-belief space
−→
Ω is at most κ.

To prove Part (2), I define Dα := Aκ({JeK−→Ω ∈ D | e ∈ Lα}) for each ordinal α ≤ κ,
where (Lα)κα=0 is defined as in Remark 3 so that L = Lκ. Note that Dκ coincides
with the original definition Dκ = {JeK−→

Ω
∈ D | e ∈ L}. The proof shows that Dα = Cα

for each ordinal α ≤ κ. Then, Dκ = Cκ = Cκ+1, i.e., the κ-rank of
−→
Ω is at most κ.

I discuss the role of the infinite regular cardinal κ. By Heifetz and Samet (1998a)

and Proposition 7, the κ-rank of the terminal κ-qualitative-belief space
−→
Ω∗ is gener-

ically κ. By the construction of Heifetz and Samet (1998a), there exists a κ-belief

space
−→
Ω with κ-rank κ, but the κ-rank of such space never exceeds κ. Such a par-

ticular space (as a κ-belief space) does not contain all possible belief hierarchies of
depth up to κ. Thus, for the infinite regular cardinal κ, Heifetz and Samet (1998a)’s
non-existence argument does not apply to a given class of κ-belief spaces.62

Two further remarks on Proposition 7 are in order. First, since {JeK−→
Ω
∈ D | e ∈

L} = Dκ = Cκ, one can examine whether a given κ-belief space
−→
Ω is non-redundant

through its primitives alone (i.e., Cκ): recall footnote 35.
Second, in the construction of a terminal κ-qualitative-belief space, each state is

a belief hierarchy of depth up to κ. This paper rather shows that the non-existence
hinges on the fact that an infinite regular cardinal κ, which determines depth of
reasoning, is not specified.63

Within a category of κ-belief spaces (with κ an infinite regular cardinal), the
description map preserves interactive beliefs of depth up to κ in a given κ-belief space
to the terminal κ-belief space. At the same time, such preservation concerns only to
the extent that belief hierarchies of depth up to κ are preserved.

7.4 Comparison of Terminal κ-Belief and λ-Belief Spaces

Throughout the subsection, let κ and λ be infinite regular cardinals with κ < λ. Fix

I, (S,S), and some properties in Definition 2 for the players’ beliefs. Denote by
−→
Ω∗κ

and
−→
Ω∗λ the terminal κ-belief space and the terminal λ-belief space, respectively. I

compare these terminal belief spaces:

62On the contrary, if a terminal partitional ℵ∞-knowledge space existed in the category of ℵ∞-
knowledge spaces, then, for any (infinite regular) cardinal κ, its HS-rank is at least κ, which is a
contradiction because the HS-rank of the terminal space is a fixed ordinal.

63As discussed in Section 5, countable additivity of probabilistic beliefs makes it possible to restrict
attention to belief hierarchies of depth up to ℵ0 (i.e., finite-level beliefs) on an ℵ1-algebra. In the
context of this subsection, Proposition 4 implies that, within the class of probabilistic-belief spaces,
the terminal probabilistic-belief space has the ℵ1-rank ℵ0.
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Proposition 8 (Cardinality of a Terminal Space). 1. D−→
Ω∗λ

:
−→
Ω∗λ →

−→
Ω∗κ is a surjec-

tive morphism so that |Ω∗κ| ≤ |Ω∗λ|.

2. Let |I| ≥ 2 and |S| ≥ 2, and suppose S contains E with ∅ ( E ( S. Then,
max(2ℵ0 , κ) ≤ |Ω∗κ|.

Proposition 8 (1) implies that the terminal λ-belief space
−→
Ω∗λ is at least as rich as

−→
Ω∗κ in cardinality: |Ω∗κ| ≤ |Ω∗λ|. This is because the description map D−→

Ω∗λ
from

−→
Ω∗λ into

the terminal κ-space
−→
Ω∗κ is surjective (note that both spaces reside in the same given

category of κ-belief spaces). When it comes to belief hierarchies of depth up to κ,

however, the space
−→
Ω∗λ is redundant as a κ-belief space (because there would be two

states which induce the same belief hierarchy of depth up to κ) and is not minimal
(because there is an expression e ∈ Lλ \ Lκ).

The rest of this subsection discusses two implications of Proposition 8. The first

is the sense in which the space
−→
Ω∗λ contains all possible belief hierarchies of depth up

to κ. To that end, I introduce a weaker notion of terminality following Friedenberg

(2010). Let ν be an infinite regular cardinal with ν ≤ κ. A κ-belief space
−→
Ω′ is

ν-terminal (in the category of κ-belief spaces) if, for any state ω ∈ Ω of any κ-belief

space
−→
Ω , there is a state ω′ ∈ Ω′ such that ω and ω′ induce the same belief hierarchy

of depth up to ν for every player: formally, D−→
Ω

(ω) ∩ (S t Lν) = D−→
Ω′

(ω′) ∩ (S t Lν).
Then, a κ-belief space

−→
Ω is terminal (in the sense of Definition 4) iff it is κ-terminal,

non-redundant, and minimal. This is because, given the existence of a terminal κ-

belief space
−→
Ω∗, a κ-belief space

−→
Ω′ is κ-terminal iff D−→

Ω′
is surjective. With these in

mind, the terminal λ-belief space (in the category of λ-belief spaces) is κ-terminal (as
a κ-belief space) but is not minimal and is redundant.

The second implication of Proposition 8 is the non-existence of a terminal ℵ∞-
belief space. I informally argue that the cardinality of the ℵ∞-belief space, if it
existed, would be as high as any cardinal, which is impossible.

Define the class LIℵ∞(Aℵ∞(S)) of expressions as in Definition 5.64 Define the class

Ω∗ℵ∞ as in Equation (1), and let
−−→
Ω∗ℵ∞ be the terminal space (as a class). Since

−−→
Ω∗ℵ∞

would be non-redundant, D∗ℵ∞ is a complete algebra that separates any two states,
i.e., the power class P(Ω∗ℵ∞). Proposition 8 suggests that κ ≤ |Ω∗ℵ∞| for any (infinite
regular) cardinal, meaning that Ω∗ℵ∞ is too big to be a set.

Alternatively, consider the terminal κ-belief space
−→
Ω∗κ in the category of κ-belief

spaces satisfying at least the Kripke property (recall Definition 2). One can introduce

the players’ beliefs about any subset of
−→
Ω∗κ: formally, see Remark A.1 in Appendix

A.5. In the extended space 〈(Ω∗κ,P(Ω∗κ)), (B
∗
i )i∈I ,Θ

∗〉, every state ω∗κ ∈ Ω∗κ induces a
belief hierarchy of an arbitrary depth, which is uniquely extended from the original

64While LIκ(Aκ(S)) (Definition 5) is a well-defined set for any infinite (regular) cardinal κ, it can
be seen that the class LIℵ∞(Aℵ∞(S)) is too big to be a set in the standard set theory.
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belief hierarchy (of depth κ). Thus, if the terminal ℵ∞-belief space
−−→
Ω∗ℵ∞ existed as

a set, then one can construct an injection from Ω∗κ into Ω∗ℵ∞ , asserting again that
κ ≤ |Ω∗ℵ∞| for any κ.

8 Concluding Remarks

The main result of this paper (Theorem 1) is the construction of the terminal belief

space
−→
Ω∗ for varieties of assumptions on properties of beliefs. The space

−→
Ω∗ contains

all belief hierarchies of depth up to κ at some state of some belief space. The space Ω∗

is belief-complete, i.e., contains all possible beliefs about its states (Proposition 1).
The space also exhausts any statement regarding interactive beliefs about the nature
states that holds at some state of some belief space (Proposition 2). Each state in Ω∗

coherently and completely describes the corresponding nature state and interactive

beliefs (Proposition 3 and Corollary 1). Explicitly, Theorem 2 shows that
−→
Ω∗ is the

largest belief-closed set of coherent descriptions that reflects assumptions on beliefs.
This paper shows that a terminal belief space exists regardless of whether be-

liefs are qualitative or probabilistic (Corollary 2). Proposition 4 shows, under the
framework of this paper, finite-level belief hierarchies uniquely extend to countable
levels for countably-additive probabilistic beliefs, as in the literature on type spaces.
Appendix D shows that the framework of this paper also applies to richer forms of
beliefs such as conditional beliefs. Appendix D also discusses the extensions to the
existence of terminal knowledge-unawareness, preference, and expectation spaces.

This paper circumvents the previous non-existence of a terminal knowledge space
by restricting attention to all knowledge (belief) hierarchies of depth up to κ. The
κ-algebra D∗ can capture all possible interactive beliefs of depth up to κ (Proposition
7 and Remark 7). While an infinite regular cardinal κ can be taken arbitrarily for

given nature states (S,S), the terminal κ-belief space
−→
Ω∗ contains all belief hierarchies

of depth up to κ and only up to κ (Proposition 8).
The paper demonstrates that the existence of a terminal belief space hinges on

the specification of an infinite regular cardinal κ, which determines depth of reason-
ing κ, rather than on properties of beliefs themselves (Remark 3). Section 6 shows
that the specification of κ is crucial also for epistemic characterizations of game-
theoretic solution concepts such as iterated elimination of strictly dominated (and
also B-dominated) actions. Thus, the specification of depth of reasoning also plays
an important role in such game-theoretic applications especially when players face a
general infinite game or when their beliefs may not satisfy logical properties.

Given a strategic game, this paper shows that there exists a terminal κ-belief
space with the following properties: (i) the players can engage in interactive reason-
ing up to predetermined depth κ which is sufficient to reason about their interactive
beliefs about their play; (ii) rationality, beliefs in rationality, and common belief in
rationality are expressible within the terminal space; (iii) common belief in rational-
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ity characterizes iterated elimination of strictly dominated (or B-dominated) actions
within the terminal space; and (iv) the above (i)-(iii) hold irrespective of assumptions
on the players’ beliefs. The paper also shows that, through examples, the choice of
an infinite (regular) cardinal κ plays a crucial role in epistemic characterizations of
solution concepts in games.

A Appendix

A.1 Section 3

Proof of Remark 3. First, it follows from induction that Lλ ⊆ LIλ(Aκ(S)). Namely,
(i) L0 ⊆ LIλ(Aκ(S)); and (ii) if Lβ ⊆ LIλ(Aκ(S)) for all β < α(≤ λ) then Lα ⊆
LIλ(Aκ(S)). Conversely, it can be seen that if e ∈ Lλ then e ∈ Lα for some α < λ.
I show, by induction on λ-expressions, that LIλ(Aκ(S)) ⊆ Lλ. First, Aκ(S) ⊆ Lλ.
Second, if e ∈ Lλ then e ∈ Lα for some α < λ and thus (¬e), (βi(e)) ∈ Lα+1 ⊆ Lλ.
Third, take F ⊆ Lλ with 0 < |F| < λ. For each f ∈ F , there is αf < λ with f ∈ Lαf .
Since |F| < λ, the definition of an infinite regular cardinal yields γ := supf∈F αf < λ.
Since F ⊆ Lγ ⊆ Lλ, it follows that

∧
F ∈ Lλ. Hence, LIλ(Aκ(S)) ⊆ Lλ.

Observe that the proof of Remark 3 used the fact that a fixed infinite cardinal κ
is regular. When λ = κ, the proof states that the set Lκ contains the conjunction of a
set of expressions of cardinality less than κ, where each expression in the set captures
interactive reasoning of depth less than κ (see Remark 2 for the formal definition of
depth of an expression). Specifically, let κ = ℵ0. Then, Lκ contains, for instance,
the conjunction of “player i believes E,” “player j believes E,” “player i believes
that player j believes E,” and “player j believes that player i believes E.” It is a
conjunction of finitely many expressions, each of which has finite depth. Likewise,
let κ = ℵ1. Then, Lκ contains, for instance, the countable conjunction of “player i1
believes i2 believes ... in believes E” for any natural number n. It is a conjunction of
countably many expressions, each of which is of at most countable depth.

Proof Sketch of Remark 4. The proof is similar to Heifetz and Samet (1998b, Propo-
sition 4.1) and Meier (2006, Proposition 2). For nature events, since ϕ is a morphism,
J·K−→

Ω
= Θ−1(·) = ϕ−1(Θ′)−1(·) = ϕ−1(J·K−→

Ω′
). Then, use the property that ϕ−1 com-

mutes with set-algebraic operations and belief operators.

Proof of Lemma 1. 1. The proof consists of two steps. The first step establishes
the following correspondence between syntactic and set-theoretic operations.

(a) [(¬e)] = [e]c for any e ∈ L.

(b) [S] = Ω∗ (and [∅] = ∅).
(c) [

∧
E ] =

⋂
e∈E [e] (and [

∨
E ] =

⋃
e∈E [e]) for any E ∈ P(L) with 0 < |E| < κ.
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To prove (1a), fix e ∈ L. Then, ω∗ ∈ [(¬e)] iff (¬e) ∈1 ω
∗ = D(ω) iff ω ∈

J¬eK−→
Ω

= ¬JeK−→
Ω

iff ω 6∈ JeK−→
Ω

iff e 6∈1 D(ω) = ω∗ iff ω∗ 6∈ [e] iff ω∗ ∈ [e]c, where

a belief space
−→
Ω and a state ω ∈ Ω satisfy ω∗ = D(ω). Thus, [(¬e)] = [e]c.

To prove (1b), if ω∗ ∈ Ω∗ then ω∗ = D(ω) for some belief space
−→
Ω and ω ∈ Ω.

Since ω ∈ Ω = Θ−1(S) = JSK−→
Ω

, I get S ∈1 D(ω) = ω∗ and thus ω∗ ∈ [S]. This
establishes Ω∗ = [S]. Also, by (1a), [∅] = [¬S] = [S]c = ∅.
For (1c), ω∗ ∈ [

∧
E ] iff

∧
E ∈1 ω∗ = D(ω) iff ω ∈ J

∧
EK−→

Ω
=
⋂
e∈EJeK−→Ω iff

ω∗ ∈
⋂
e∈E [e], where a belief space

−→
Ω and a state ω ∈ Ω satisfy ω∗ = D(ω).

The second step establishes that D∗ is a κ-algebra on Ω∗. By the first step, D∗
contains Ω∗ = [S] and ∅ = [∅]. Next, if [e] ∈ D∗, then it follows from the first
step and (¬e) ∈ L that [e]c = [(¬e)] ∈ D∗. Next, take E ∈ P(L) with 0 < |E| <
κ. It follows from the first step and

∧
E ∈ L that

⋂
e∈E [e] = [

∧
E ] ∈ D∗.

2. I show D−1([·]) = J·K−→
Ω

for any belief space
−→
Ω . For any e ∈ L, ω ∈ D−1([e]) iff

D(ω) ∈ [e] iff e ∈1 D(ω) iff ω ∈ JeK−→
Ω

.

Proof of Lemma 2. 1. For any ω∗ ∈ Ω∗, choose a belief space
−→
Ω and ω ∈ Ω with

ω∗ = D(ω), and define Θ∗(ω∗) := Θ(ω), where Θ(ω) ∈0 D(ω). I show Θ∗(ω∗)

does not depend on a particular choice of
−→
Ω and ω (i.e., Θ∗ : Ω∗ → S is well-

defined). Indeed, if ω∗ = D−→
Ω

(ω) = D−→
Ω′

(ω′) for some ω ∈ Ω and ω′ ∈ Ω′, then
(0,Θ(ω)) = (0,Θ′(ω′)).

2. For each E ∈ Aκ(S), ω∗ ∈ (Θ∗)−1(E) iff Θ∗(ω∗) = Θ(ω) ∈ E iff ω ∈ Θ−1(E) =

JEK−→
Ω

iff E ∈1 D(ω) = ω∗ iff ω∗ ∈ [E], where
−→
Ω and ω ∈ Ω satisfy ω∗ = D(ω).

To establish Lemma 3, I provide Lemma A.1 below. Suppose that a certain
property of beliefs is represented by operators f−→

Ω
: D → D in each belief space

−→
Ω . Operators would be generated by composing belief operators (Bi)i∈I and set-
algebraic as well as constant and identity operations. For example, let f−→

Ω
(·) = Bi(·)

and g−→
Ω

(·) = BiBi(·). Positive Introspection is characterized by f−→
Ω

(·) ⊆ g−→
Ω

(·). Truth
Axiom is characterized by f−→

Ω
(·) ⊆ idD(·). Monotonicity is expressed as f−→

Ω
being

monotone: f−→
Ω

(E) ⊆ f−→
Ω

(F ) for all E,F ∈ D with E ⊆ F . Likewise, λ-Conjunction is
expressed as f−→

Ω
satisfying λ-conjunction:

⋂
E∈E f−→Ω (E) ⊆ f−→

Ω
(
⋂
E) for all E ∈ P(D)

with 0 < |E| < λ. Abusing the notation, denote by f−→
Ω∗

the corresponding operation

in
−→
Ω∗ = 〈(Ω∗,D∗), (B∗i )i∈I ,Θ∗〉 (note that B∗i is shown to be well-defined on (Ω∗,D∗)

irrespective of Lemma A.1 below).

Lemma A.1 (Preservation of Properties of Beliefs). Suppose that f−→
Ω

: D → D and

g−→
Ω

: D → D are defined in each κ-belief space
−→
Ω . Suppose further that if ϕ : (Ω,D)→

(Ω′,D′) is measurable then ϕ−1f−→
Ω′

(·) = f−→
Ω
ϕ−1(·) and ϕ−1g−→

Ω′
(·) = g−→

Ω
ϕ−1(·). Then:
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1. (a) If f−→
Ω

(·) ⊆ g−→
Ω

(·) holds for every belief space
−→
Ω , then f−→

Ω∗
(·) ⊆ g−→

Ω∗
(·).

(b) If f−→
Ω

(JeK−→
Ω

) 6⊆ g−→
Ω

(JeK−→
Ω

) for some belief space
−→
Ω and some e ∈ L, then

f−→
Ω∗

([e]) 6⊆ g−→
Ω∗

([e]).

(c) Let
−→
Ω and

−→
Ω′ be a belief space. If there exits a surjective measurable map

ϕ : (Ω,D)→ (Ω′,D′), then f−→
Ω

(·) ⊆ g−→
Ω

(·) implies f−→
Ω′

(·) ⊆ g−→
Ω′

(·).

2. (a) If f−→
Ω

is monotone for every belief space
−→
Ω , then so is f−→

Ω∗
.

(b) Suppose f−→
Ω

(JeK−→
Ω

) 6⊆ f−→
Ω

(JêK−→
Ω

) for some belief space
−→
Ω and some e, ê ∈ L.

Then, f−→
Ω∗

([e]) 6⊆ f−→
Ω∗

([ê]).

(c) Let
−→
Ω and

−→
Ω′ be a belief space. Suppose there exits a surjective measurable

map ϕ : (Ω,D)→ (Ω′,D′). If f−→
Ω

is monotone, then so is f−→
Ω′

.

3. (a) If f−→
Ω

satisfies λ-conjunction for every belief space
−→
Ω , then so does f−→

Ω∗
.

(b) Suppose
⋂
e∈E f−→Ω (JeK−→

Ω
) 6⊆ f−→

Ω
(
⋂
e∈EJeK−→Ω ) for some belief space

−→
Ω and some

E ∈ P(L) with 0 < |E| < λ. Then,
⋂
e∈E f−→Ω∗([e]) 6⊆ f−→

Ω∗
(
⋂
e∈E [e]).

(c) Let
−→
Ω and

−→
Ω′ be a belief space. Suppose there exits a surjective measurable

map ϕ : (Ω,D)→ (Ω′,D′). If f−→
Ω

satisfies λ-conjunction, then so does f−→
Ω′

.

Proof of Lemma A.1. 1. The following intermediate result can be obtained. Let
ϕ : (Ω,D)→ (Ω′,D′) be measurable. Suppose that, for all E ∈ D, if ω ∈ f−→

Ω
(E)

then ω ∈ g−→
Ω

(E). Then, for any E ′ ∈ D′, ϕ(ω) ∈ f−→
Ω′

(E ′) implies ϕ(ω) ∈ g−→
Ω′

(E ′).
Then, it suffices to show the following:

(a) If ω∗ ∈ f−→
Ω∗

([e]), then there are a belief space
−→
Ω and ω ∈ Ω with ω∗ = D(ω).

Now, ω∗ = D(ω) ∈ g−→
Ω∗

([e]).

(b) By hypothesis, there is ω ∈ Ω such that ω ∈ f−→
Ω

(JeK−→
Ω

) = D−1f−→
Ω∗

([e]) and
ω 6∈ g−→

Ω
(JeK−→

Ω
) = D−1g−→

Ω∗
([e]).

(c) If ω′ ∈ f−→
Ω′

(E ′), then ω′ = ϕ(ω) for some ω ∈ Ω. Now, ω′ = ϕ(ω) ∈ g−→
Ω′

(E ′).

2. The following intermediate result can be obtained. Let ϕ : (Ω,D) → (Ω′,D′)
be measurable, and let f−→

Ω
be monotone. For any E ′, F ′ ∈ D′ with E ′ ⊆ F ′, if

ϕ(ω) ∈ f−→
Ω′

(E ′), then ϕ(ω) ∈ f−→
Ω′

(F ′). Then, it suffices to show the following:

(a) Let [e] ⊆ [ê]. If ω∗ ∈ f−→
Ω∗

([e]), then there are a belief space
−→
Ω and ω ∈ Ω

with ω∗ = D(ω). Now, ω∗ = D(ω) ∈ f−→
Ω∗

([ê]).

(b) By hypothesis, there is ω ∈ Ω such that ω ∈ f−→
Ω

(JeK−→
Ω

) = D−1f−→
Ω∗

([e]) and
ω 6∈ f−→

Ω
(JêK−→

Ω
) = D−1f−→

Ω∗
([ê]).

(c) Let E ′ ⊆ F ′. If ω′ ∈ f−→
Ω′

(E ′), then ω′ = ϕ(ω) for some ω ∈ Ω. Now,
ω′ = ϕ(ω) ∈ f−→

Ω′
(F ′).
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3. The following intermediate result can be obtained. Let ϕ : (Ω,D) → (Ω′,D′)
be measurable. If f−→

Ω
satisfies λ-conjunction, then, for any E ′ ∈ P(D′) with

0 < |E ′| < λ, ϕ(ω) ∈
⋂
E′∈E ′ f−→Ω′(E

′) implies ϕ(ω) ∈ f−→
Ω′

(
⋂
E ′). Then, it suffices

to show the following:

(a) Fix E∗ ∈ P(D∗) with 0 < |E∗| < λ. If ω∗ ∈
⋂

[e]∈E∗ f−→Ω∗([e]), then there are a

belief space
−→
Ω and ω ∈ Ω with ω∗ = D(ω). Now, ω∗ = D(ω) ∈ f−→

Ω∗
(
⋂
E∗).

(b) By hypothesis, there is ω ∈ Ω with ω ∈
⋂
e∈E f−→Ω (JeK−→

Ω
) = D−1(

⋂
e∈E f−→Ω∗([e]))

and ω 6∈ f−→
Ω

(
⋂
e∈EJeK−→Ω ) = D−1(f−→

Ω∗
(
⋂
e∈E [e])).

(c) Fix E ′ ∈ P(D′) with 0 < |E ′| < λ. If ω′ ∈
⋂
E′∈E ′ f−→Ω′(E

′), then there is
ω ∈ Ω with ω′ = ϕ(ω). Now, ω′ = ϕ(ω) ∈ f−→

Ω′
(
⋂
E ′).

Two remarks on Lemma A.1 are in order. First, B∗i violates some property of

beliefs if there exists a belief space
−→
Ω in the given category such that Bi violates the

corresponding property with respect to Dκ = D−1(D∗). Second, for belief spaces
−→
Ω

and
−→
Ω′, if there is a surjective measurable map ϕ : (Ω,D)→ (Ω′,D′) with Biϕ

−1(·) =
ϕ−1B′i(·), then B′i inherits the properties of Bi. Now, I prove Lemma 3.

Proof of Lemma 3. 1. To show B∗i is well-defined, take e, f ∈ D with [e] = [f ].

If ω∗ ∈ B∗i ([e]) = [βi(e)], then there are a belief space
−→
Ω and ω ∈ Ω with

D(ω) = ω∗ ∈ [βi(e)], i.e., βi(e) ∈1 D(ω). Thus, ω ∈ Jβi(e)K−→Ω = Bi(JeK−→Ω ) =
Bi(D

−1([e])). Since [e] = [f ], I get ω ∈ Jβi(f)K−→
Ω

, and thus ω∗ = D(ω) ∈
[βi(f)] = B∗i ([f ]). By changing the role of e and f , B∗i ([e]) = B∗i ([f ]).

Next, I show B∗i inherits properties specified in Definition 2. For Monotonicity,
apply Lemma A.1 (2a) by taking f−→

Ω
= Bi. For λ-Conjunction, apply Lemma

A.1 (3a) by taking f−→
Ω

= Bi. Next, apply Lemma A.1 (1a) to the following. For
Necessitation, take (f−→

Ω
, g−→

Ω
) = (Ω, Bi(Ω)). For Consistency, take (f−→

Ω
, g−→

Ω
) =

(Bi(·) ∩ (¬Bi)(·), ∅). For Truth Axiom, take (f−→
Ω
, g−→

Ω
) = (Bi, idD). For Positive

Introspection, take (f−→
Ω
, g−→

Ω
) = (Bi, BiBi). For Negative Introspection, take

(f−→
Ω
, g−→

Ω
) = (Bi, Bi(¬Bi)).

Finally, consider the Kripke property. Suppose b∗B∗i (ω
∗) ⊆ [e]. There are

a belief space
−→
Ω and ω ∈ Ω such that ω∗ = D(ω). Operating D−1 on

both sides of the set inclusion, one can obtain bBi(ω) =
⋂
F∈D:ω∈Bi(F ) F ⊆

D−1
⋂

[f ]∈D∗:ω∗∈B∗i [f ][f ] ⊆ D−1[e]. Since Bi satisfies the Kripke property, ω ∈
BiD

−1[e] = D−1B∗i ([e]). Then, ω∗ = D(ω) ∈ B∗i ([e]), as desired.

2. For any e ∈ L, Bi(D
−1([e])) = Bi(JeK−→Ω ) = Jβi(e)K−→Ω = D−1([βi(e)]) = D−1(B∗i ([e])).
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Proof of Lemma 4. First, if s ∈0 ω
∗ and s′ ∈0 D(ω∗), then there are a belief space

−→
Ω and ω ∈ Ω such that s = Θ(ω) = Θ∗(D(ω)) = Θ∗(ω∗) = s′. Note that the
argument does not depend on a particular choice of belief spaces. Second, similarly
to Heifetz and Samet (1998b, Lemma 4.6) and Meier (2006, Lemma 6), below I show
by induction that J·K−→

Ω∗
= [·]. Then, ω∗ = {s} t {e ∈ L | e ∈1 ω

∗} = {s} t {e ∈ L |
ω∗ ∈ [e]} = {s} t {e ∈ L | ω∗ ∈ JeK−→

Ω∗
} = D(ω∗) for any ω∗ ∈ Ω∗.

To establish J·K−→
Ω∗

= [·], start from E ∈ Aκ(S). In fact, ω∗ ∈ JEK−→
Ω∗

= (Θ∗)−1(E)
iff Θ∗(ω∗) = Θ∗(D(ω)) = Θ(ω) ∈ E iff ω ∈ Θ−1(E) = JEK−→

Ω
iff E ∈1 D(ω) iff

ω∗ = D(ω) ∈ [E], where
−→
Ω and ω ∈ Ω satisfy ω∗ = D(ω).

Next, let E ∈ P(L) with 0 < |E| < κ. Assume the induction hypothesis that
JeK−→

Ω∗
= [e] for all e ∈ E . Then, J

∧
EK−→

Ω∗
=
⋂
e∈EJeK−→Ω∗ =

⋂
e∈E [e] = [

∧
E ].

Next, assume the induction hypothesis that JeK−→
Ω∗

= [e]. By definition, [βi(e)] =
B∗i ([e]) = B∗i (JeK−→Ω∗) = Jβi(e)K−→Ω∗ . Also, [(¬e)] = ¬[e] = ¬JeK−→

Ω∗
= J¬eK−→

Ω∗
.

Proof of Theorem 1. I have already shown that
−→
Ω∗ = 〈(Ω∗,D∗), (B∗i )i∈I ,Θ∗〉 is a belief

space of I on (S,S) of the given category such that, for any belief space
−→
Ω , the

description map D−→
Ω

is a morphism. Remark 6 and Lemma 4 imply that D−→
Ω

is a
unique morphism (see footnote 39).

A.2 Section 4

Proof of Proposition 1. I show Part (2) first and then Part (1). Part (3) immediately
follows from these two parts.

Part (2). For the “only if” part, let
−→
Ω be non-redundant. Assume χ−→

Ω
(ω) = χ−→

Ω
(ω′).

Since D−→
Ω

is injective, I show, by induction, that D−→
Ω

(ω) = D−→
Ω

(ω′), which leads
to ω = ω′. First, Θ(ω) = Θ(ω′) follows from χ−→

Ω
(ω) = χ−→

Ω
(ω′). Second, for any

E ∈ Aκ(S), E ∈1 D−→Ω (ω) iff Θ(ω) = Θ(ω′) ∈ E iff E ∈1 D−→Ω (ω′). Third, assume
the induction hypothesis e ∈1 D−→

Ω
(ω) iff e ∈1 D−→

Ω′
(ω′). Then, (¬e) ∈1 D−→

Ω
(ω) iff

e 6∈1 D−→
Ω

(ω) iff e 6∈1 D−→
Ω

(ω′) iff (¬e) ∈1 D−→
Ω

(ω′). Fourth, assume the induction
hypothesis e ∈1 D−→Ω (ω) iff e ∈1 D−→Ω (ω′) for all e ∈ E , where E ∈ P(L) and 0 < |E| < κ.
Then,

∧
E ∈1 D−→Ω (ω) iff e ∈1 D−→Ω (ω) for all e ∈ E iff e ∈1 D−→Ω (ω′) for all e ∈ E

iff
∧
E ∈1 D−→

Ω
(ω′). Fifth, βi(e) ∈1 D−→

Ω
(ω) iff ω ∈ Bi(JeK−→Ω ) iff ω′ ∈ Bi(JeK−→Ω ) iff

βi(e) ∈1 D−→Ω (ω′), where the second equivalence follows from χ−→
Ω

(ω) = χ−→
Ω

(ω′). Hence,
D−→

Ω
(ω) = D−→

Ω
(ω′).

For the “if” part, let χ−→
Ω

be injective. Assume D−→
Ω

(ω) = D−→
Ω

(ω′). It suffices to
show χ−→

Ω
(ω) = χ−→

Ω
(ω′). First, D−→

Ω
(ω) = D−→

Ω
(ω′) yields Θ(ω) = Θ(ω′). Second, if

ω ∈ Bi(JeK−→Ω ) = D−1
−→
Ω

([βi(e)]), then D(ω′) = D(ω) ∈ [βi(e)] and thus ω′ ∈ Bi(JeK−→Ω ).

Likewise, if ω′ ∈ Bi(JeK−→Ω ) then ω ∈ Bi(JeK−→Ω ). Hence, χ−→
Ω

(ω) = χ−→
Ω

(ω′).

Part (1). For the “only if” part, a terminal space
−→
Ω is non-redundant and minimal.
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To show that χ−→
Ω

is surjective, observe that χ−→
Ω

= χ−→
Ω∗
◦D−→

Ω
follows because

χ−→
Ω

(ω) = (Θ(ω), ({e ∈ L | ω ∈ Bi(JeK−→Ω )})i∈I)
= (Θ(D−→

Ω
(ω)), ({e ∈ L | D−→

Ω
(ω) ∈ Bi([e])})i∈I) = χ−→

Ω∗
(D−→

Ω
(ω)).

Since
−→
Ω is terminal, D−→

Ω
is bijective. By Expression (3) in the discussion of this

proposition, χ−→
Ω∗

is surjective. Thus, χ−→
Ω

is surjective (note that, by Part (2), it is also

injective because
−→
Ω∗ is non-redundant).

For the “if” part, I show that D−→
Ω

is an isomorphism. Since
−→
Ω is minimal (i.e.,

D = D−1
−→
Ω

(D∗)), if D−→
Ω

is bijective then D−1
−→
Ω

: Ω∗ → Ω is measurable. By Part (2),

D−→
Ω

is injective. Thus, it suffices to show that D−→
Ω

is surjective. Take any ω∗ ∈ Ω∗.
Since χ−→

Ω
is surjective, for χ−→

Ω∗
(ω∗) ∈ Ω∗∗, there is ω ∈ Ω such that χ−→

Ω∗
(ω∗) = χ−→

Ω
(ω):

Θ∗(ω∗) = Θ(ω) and {e ∈ L | ω∗ ∈ B∗i ([e])} = {e ∈ L | ω ∈ Bi(JeK−→Ω )} for each i ∈ I.
Then, it suffices to show that ω∗ = D−→

Ω
(ω).

To that end, I show by induction that e ∈1 ω
∗ iff e ∈1 D−→Ω (ω). For any E ∈ Aκ(S),

E ∈1 ω
∗ iff Θ∗(ω∗) ∈ E iff Θ(ω) ∈ E iff E ∈1 D−→Ω (ω). Next, assume e ∈1 ω

∗ iff
e ∈1 D−→Ω (ω). Then, (¬e) ∈1 ω

∗ iff e 6∈1 ω
∗ iff e 6∈1 D−→Ω (ω) iff (¬e) ∈1 D−→Ω (ω). Next,

assume e ∈1 ω
∗ iff e ∈1 D−→Ω (ω) for all e ∈ E , where E ∈ P(L) and 0 < |E| < κ. Then,∧

E ∈1 ω
∗ iff e ∈1 ω

∗ for all e ∈ E iff e ∈1 D−→Ω (ω) for all e ∈ E iff
∧
E ∈1 D−→Ω (ω).

Next, βi(e) ∈1 ω
∗ iff ω∗ ∈ B∗i ([e]) iff ω ∈ Bi(JeK−→Ω ) iff βi(e) ∈1 D−→Ω (ω).

Proof of Proposition 2. For Part (1), it suffices to show that if Φ is satisfiable then it

is satisfiable in
−→
Ω∗. If there are a belief space

−→
Ω and ω ∈ Ω with ω ∈ JfK−→

Ω
= D−1([f ])

for all f ∈ Φ, then D(ω) ∈ [f ] = JfK−→
Ω∗

for all f ∈ Φ.
For the first assertion of Part (2), it is enough to show that Φ |=−→

Ω∗
e implies Φ |= e.

Let
−→
Ω be a belief space. If ω ∈ JfK−→

Ω
= D−1([f ]) for all f ∈ Φ, then D(ω) ∈ [f ] =

JfK−→
Ω∗

for all f ∈ Φ. By assumption, D(ω) ∈ JeK−→
Ω∗

= [e], i.e., ω ∈ D−1([e]) = JeK−→
Ω

.
Thus, Φ |= e. The second assertion can be seen as a special case of the first. Or, for

any belief space
−→
Ω , JeK−→

Ω
= D−1([e]) = D−1(JeK−→

Ω∗
) = D−1(Ω∗) = Ω.

For Part (3), let Ω consist of {s}tΦ ∈ P(S tL) such that Φ is maximally satisfi-
able and that, for any E ∈ Aκ(S), s ∈ E iff E ∈ Φ. I show Ω∗ = Ω in two steps. The
first step establishes Ω∗ ⊆ Ω. The second step proves Ω ⊆ Ω∗ by showing that there
exists a belief space defined on Ω such that its description map is an inclusion map.

Step 1. Take ω∗ ∈ Ω∗. Denote ω∗ = {s} tΦ, i.e., s ∈0 ω
∗ and Φ = {e ∈ L | e ∈1 ω

∗}.
Since ω∗ ∈ [e] = JeK−→

Ω∗
for all e ∈ Φ, the set Φ is satisfiable. To show it is maximally

satisfiable, take a satisfiable set of expressions Ψ with Φ ⊆ Ψ. If there is e ∈ Ψ \ Φ,
then (¬e) ∈ Φ ⊆ Ψ. Then, Ψ is not satisfiable, a contradiction. Thus, Φ = Ψ, i.e., Φ
is maximally satisfiable. Next, Θ∗(ω∗) = s. For any E ∈ Aκ(S), s ∈ E iff Θ∗(ω∗) ∈ E
iff E ∈1 ω

∗, i.e., E ∈ Φ.
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Step 2. I construct, in four substeps, a belief space
−→
Ω := 〈(Ω,D), (Bi)i∈I ,Θ〉 defined

on Ω such that the description map D−→
Ω

is an inclusion map. To that end, observe

that, for any maximally satisfiable set Φ, there are a belief space
−→
Ω′ and ω′ ∈ Ω′ with

Φ = {e ∈ L | ω′ ∈ JeK−→
Ω′
} (i.e., e ∈1 Φ iff ω′ ∈ JeK−→

Ω′
).

Step 2.1. Slightly abusing the notation, define [e]−→
Ω

:= {ω ∈ Ω | e ∈1 ω} for each
e ∈ L (Step 2.4 establishes [·]−→

Ω
= [·]). I show that D := {[e]−→

Ω
∈ P(Ω) | e ∈ L} is a

κ-algebra. First, Ω = [S]−→
Ω
∈ D and ∅ = [∅]−→

Ω
∈ D. Second, I show [¬e]−→

Ω
= ([e]−→

Ω
)c.

In fact, ω ∈ [¬e]−→
Ω

iff (¬e) ∈1 ω iff there are a belief space
−→
Ω′ and ω′ ∈ Ω′ with

ω′ ∈ J¬eK−→
Ω′

= (JeK−→
Ω′

)c iff e 6∈1 ω iff ω 6∈ [e]−→
Ω

iff ω ∈ ([e]−→
Ω

)c. Now, ([e]−→
Ω

)c = [¬e]−→
Ω
∈ D.

Third, I show
⋂
e∈E [e]−→Ω = [

∧
E ]−→

Ω
, where E ∈ P(L) and 0 < |E| < κ. By definition,

ω ∈
⋂
e∈E [e]−→Ω iff ω ∈ [e]−→

Ω
, i.e., e ∈1 ω, for all e ∈ E iff there are a belief space

−→
Ω′ and ω′ ∈ Ω′ with ω′ ∈

⋂
e∈EJeK−→Ω′ = J

∧
EK−→

Ω′
iff
∧
E ∈1 ω iff ω ∈ [

∧
E ]−→

Ω
. Now,⋂

e∈E [e]−→Ω = [
∧
E ]−→

Ω
∈ D.

Step 2.2. For each [e]−→
Ω
∈ D, define Bi([e]−→Ω ) := [βi(e)]−→Ω . First, I show that Bi is

well-defined: [e]−→
Ω

= [f ]−→
Ω

implies [βi(e)]−→Ω = [βi(f)]−→
Ω

. Assume [e]−→
Ω

= [f ]−→
Ω

. Let

ω ∈ [βi(e)]−→Ω . There are a belief space
−→
Ω′ and ω′ ∈ Ω′ such that ω′ ∈ Jβi(e)K−→Ω′ =

B′i(JeK−→Ω′) = B′i(JfK−→
Ω′

) = Jβi(f)K−→
Ω′

, where the second equality follows from JeK−→
Ω′

=
JfK−→

Ω′
, which can be shown as follows. If ω̃ ∈ JeK−→

Ω′
, then e ∈ Φ := {ê ∈ L | ω̃ ∈

JêK−→
Ω′
}. Since Φ is maximally satisfiable and [e]−→

Ω
= [f ]−→

Ω
, it follows that f ∈ Φ, i.e.,

ω̃ ∈ JfK−→
Ω′

. Similarly, ω̃ ∈ JfK−→
Ω′

implies ω̃ ∈ JeK−→
Ω′

. Now, ω ∈ [βi(f)]−→
Ω

, establishing
[βi(e)]−→Ω ⊆ [βi(f)]−→

Ω
. Similarly, [βi(f)]−→

Ω
⊆ [βi(e)]−→Ω .

Second, I show that each Bi inherits the properties of beliefs in Definition 2
imposed in a given category of belief spaces. For Monotonicity, let ω ∈ Bi([e]−→Ω ) and

[e]−→
Ω
⊆ [f ]−→

Ω
. There are a belief space

−→
Ω′ and ω′ ∈ Ω′ with ω′ ∈ Jβi(e)K−→Ω′ = B′i(JeK−→Ω′).

Since [e]−→
Ω′
⊆ [f ]−→

Ω′
implies JeK−→

Ω′
⊆ JfK−→

Ω′
, it follows from Monotonicity of B′i that

ω′ ∈ B′i(JfK−→
Ω′

) = Jβi(f)K−→
Ω′

. Then, ω ∈ [βi(f)]−→
Ω

= Bi([f ]−→
Ω

).

For Necessitation, if ω ∈ Ω then there are a belief space
−→
Ω′ and ω′ ∈ Ω′ such that

ω′ ∈ JeK−→
Ω′

for all e ∈1 ω. Then, ω′ ∈ JSK−→
Ω′

= B′i(JSK−→
Ω′

) = Jβi(S)K−→
Ω′

, where the first
equality follows from Necessitation of B′i. Hence, (βi(S)) ∈1 ω, i.e., ω ∈ [βi(S)]−→

Ω′
=

Bi([S]−→
Ω′

). Thus, Ω = Bi([S]−→
Ω

) = Bi(Ω).
For λ-Conjunction, if ω ∈

⋂
e∈E Bi([e]−→Ω ) where E ∈ P(L) and 0 < |E| < λ, then

there are a belief space
−→
Ω′ and ω′ ∈ Ω′ such that ω′ ∈ B′i(JeK−→Ω′) for all e ∈ E . Since B′i

satisfies λ-Conjunction, ω′ ∈
⋂
e∈E B

′
i(JeK−→Ω′) ⊆ B′i(

⋂
e∈EJeK−→Ω′) = B′i(J

∧
EK−→

Ω′
). Then,

ω ∈ Bi([
∧
E ]−→

Ω′
).

For the Kripke property, let
⋂

[e]−→
Ω
∈D:ω∈Bi([e]−→Ω )[e]−→Ω ⊆ [f ]−→

Ω
. There are a belief

space
−→
Ω′ and ω′ ∈ Ω′ with {e ∈ L | ω ∈ Bi([e]−→Ω )} = {e ∈ L | ω′ ∈ B′i(JeK−→Ω′)}. Then,

since
⋂

JeK−→
Ω′
∈D′:ω′∈B′i(JeK−→Ω′ )

JeK−→
Ω′
⊆ JfK−→

Ω′
and since B′i satisfies the Kripke property,
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ω′ ∈ B′i(JfK−→
Ω′

). Then, ω ∈ Bi([f ]−→
Ω

).

For Consistency, if ω ∈ Bi([e]−→Ω ) = [βi(e)]−→Ω , then there are a belief space
−→
Ω′

and ω′ ∈ Ω′ with ω′ ∈ B′i(JeK−→Ω′) ⊆ (¬B′i)(J¬eK−→Ω′), where the set inclusion follows
from Consistency of B′i. Then, ω′ ∈ J(¬βi)(¬e)K−→Ω′ , and thus ω ∈ [(¬βi)(¬e)]−→Ω =

(¬Bi)(¬[e]−→
Ω

). For Truth Axiom, if ω ∈ Bi([e]−→Ω ) then there are a belief space
−→
Ω′ and

ω′ ∈ Ω′ such that ω′ ∈ Jβi(e)K−→Ω′ = B′i(JeK−→Ω′) ⊆ JeK−→
Ω′

. Thus, ω ∈ [e]−→
Ω

.

For Positive Introspection, if ω ∈ Bi([e]−→Ω ), then there are a belief space
−→
Ω′ and

ω′ ∈ Ω′ with ω′ ∈ Jβi(e)K−→Ω′ = B′i(JeK−→Ω′) ⊆ B′iB
′
i(JeK−→Ω′) = Jβiβi(e)K−→Ω′ , where the set in-

clusion follows from Positive Introspection of B′i. Then, ω ∈ [βiβi(e)]−→Ω = BiBi([e]−→Ω ).
The proof for Negative Introspection is similar.

Step 2.3. For each ω ∈ Ω, let Θ(ω) be the unique s ∈ S with s ∈0 ω. Since
Θ−1(E) = [E]−→

Ω
∈ D for all E ∈ Aκ(S), Θ : (Ω,D)→ (S,Aκ(S)) is measurable.

Step 2.4. So far, I have constructed a belief space
−→
Ω . To show that the description

map D−→
Ω

is an inclusion map, I start with showing that [·]−→
Ω

= J·K−→
Ω

(once
−→
Ω =

−→
Ω∗

is established, [·]−→
Ω

= J·K−→
Ω∗

= [·]). For each E ∈ Aκ(S), [E]−→
Ω

= Θ−1(E) = JEK−→
Ω

.
If [e]−→

Ω
= JeK−→

Ω
, then [¬e]−→

Ω
= ¬[e]−→

Ω
= ¬JeK−→

Ω
= J¬eK−→

Ω
and [βi(e)]−→Ω = Bi([e]−→Ω ) =

Bi(JeK−→Ω ) = Jβi(e)K−→Ω . Assume [e]−→
Ω

= JeK−→
Ω

for each e ∈ E , where E ∈ P(L) and
0 < |E| < κ. Then, [

∧
E ]−→

Ω
=
⋂
e∈E [e]−→Ω =

⋂
e∈EJeK−→Ω = J

∧
EK−→

Ω
.

Finally, I establish D−→
Ω

(ω) = ω for all ω ∈ Ω. First, for any ω, Θ(ω) ∈0 D−→Ω (ω)
and s ∈0 ω satisfy s = Θ(ω). Second, e ∈1 D−→Ω (ω) iff D−→

Ω
(ω) ∈ [e] iff ω ∈ D−1

−→
Ω

([e]) =

JeK−→
Ω

= [e]−→
Ω

iff e ∈1 ω.

Proof of Proposition 3. For Part (1), e 6∈1 ω∗ iff ω∗ 6∈ [e] iff ω∗ ∈ ¬[e] = [¬e] iff
(¬e) ∈1 ω∗. For Part (2), let e ∈1 ω∗ and (e → f) ∈1 ω∗. Then, ω∗ ∈ [e] and
ω∗ ∈ [e → f ] = [(¬e) ∨ f ] = ¬[e] ∪ [f ]. Thus, ω∗ ∈ [f ], i.e., f ∈1 ω

∗. For Part (3),∧
E ∈1 ω

∗ iff ω∗ ∈ [
∧
E ] =

⋂
e∈E [e] iff, for all e ∈ E , ω∗ ∈ [e], i.e., e ∈1 ω

∗.

Proof of Corollary 1. Part (1) follows from Proposition 3. Part (3) follows from
Proposition 3 and the fact that (¬βi)(e) ∧ (¬βi)(¬βi)(e) ∈1 ω

∗ iff ω∗ ∈ (¬B∗i )([e]) ∩
(¬B∗i )(¬B∗i )([e]). Thus, I prove Part (2).

First, if βi(e) 6∈1 ω
∗ and βi(¬e) 6∈1 ω

∗, then by Proposition 3, (¬βi)(e)∧(¬βi)(¬e) ∈1

ω∗. Second, assume Consistency on i’s beliefs. Since B∗i ([e]) ∩B∗i (¬[e]) = ∅, βi(e) ∈1

ω∗ and βi(¬e) ∈1 ω∗ do not hold simultaneously. If βi(e) ∈1 ω∗ then (¬βi)(e) ∧
(¬βi)(¬e) 6∈1 ω

∗. If βi(¬e) ∈1 ω
∗ then (¬βi)(e) ∧ (¬βi)(¬e) 6∈1 ω

∗. Also, (¬βi)(e) ∧
(¬βi)(¬e) ∈1 ω∗ implies βi(e) 6∈1 ω∗ and βi(¬e) 6∈1 ω∗. Conversely, suppose ex-
actly one of the three conditions holds. If ω∗ ∈ B∗i ([e]) then βi(e) ∈1 ω∗. Then,
βi(¬e) 6∈1 ω

∗, i.e., ω∗ ∈ (¬B∗i )([¬e]) = (¬B∗i )([e]c), establishing Consistency.

Proof of Theorem 2. Step 1. The proof consists of two steps. The first step shows that
Ω∗ is belief-closed. For (1a), take ω∗ ∈ Ω∗. There is a unique nature state s = Θ∗(ω∗)
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with s ∈0 ω
∗. For any E ∈ Aκ(S), s ∈ E iff Θ∗(ω∗) ∈ E iff ω∗ ∈ (Θ∗)−1(E) = [E],

i.e., E ∈1 ω
∗. Conditions (1b) to (1d) follow from Proposition 3.

Next, consider (2a). If (e↔ f) is valid in
−→
Ω∗, then JeK−→

Ω∗
= JfK−→

Ω∗
and B∗i (JeK−→Ω∗) =

B∗i (JfK−→
Ω∗

), i.e., Jβi(e)K−→Ω∗ = Jβi(f)K−→
Ω∗

. It follows that Jβi(e) ↔ βi(f)K−→
Ω

= Ω∗, i.e.,

(βi(e)↔ βi(f)) is valid in
−→
Ω∗.

For (2b), similarly to the above argument, if (e→ f) is valid in
−→
Ω∗, then JeK−→

Ω∗
⊆

JfK−→
Ω∗

and thus B∗i (JeK−→Ω∗) ⊆ B∗i (JfK−→
Ω∗

), i.e., Jβi(e)K−→Ω∗ ⊆ Jβi(f)K−→
Ω∗

. Then, Jβi(e) →
βi(f)K−→

Ω∗
= Ω∗, i.e., (βi(e)→ βi(f)) is valid in

−→
Ω∗.

For (2c), by supposition,
⋂
{JfK−→

Ω∗
∈ D∗ | ω∗ ∈ B∗i (JfK−→

Ω∗
)} ⊆ JeK−→

Ω∗
. By the Kripke

property of
−→
Ω∗, ω∗ ∈ B∗i (JeK−→Ω∗) = [βi(e)], i.e., βi(e) ∈1 ω

∗.
Next, I show (3). Fix ω∗ ∈ Ω∗. It is enough to show that each of the follow-

ing expressions is valid in
−→
Ω∗. For Necessitation, consider Jβi(S)K−→

Ω∗
= B∗i (JSK−→

Ω∗
) =

B∗i (Ω
∗) = Ω∗. For λ-Conjunction, consider: J(

∧
e∈E βi(e))→ βi(

∧
E)K−→

Ω∗
= (¬

⋂
e∈E B

∗
i (JeK−→Ω∗))∪

B∗i (
⋂
e∈EJeK−→Ω∗) = Ω∗. For Consistency, consider Jβi(e)→ (¬βi)(¬e)K−→Ω∗ = (¬B∗i )(JeK−→Ω∗)∪

(¬B∗i )(¬JeK−→
Ω∗

) = Ω∗. For Truth Axiom, consider Jβi(e) → eK−→
Ω∗

= (¬B∗i )(JeK−→Ω∗) ∪
JeK−→

Ω∗
= Ω∗. For Positive Introspection, consider Jβi(e)→ βiβi(e)K−→Ω∗ = (¬B∗i )(JeK−→Ω∗)∪

B∗iB
∗
i (JeK−→Ω∗) = Ω∗. For Negative Introspection, consider J(¬βi)(e)→ βi(¬βi)(e)K−→Ω∗ =

B∗i (JeK−→Ω∗) ∪B
∗
i (¬B∗i )(JeK−→Ω∗) = Ω∗.

Step 2. The second step shows that Ω ⊆ Ω∗ for any belief-closed set Ω. To that

end, I introduce a belief space
−→
Ω defined on Ω, and show that the description map

D :
−→
Ω →

−→
Ω∗ is an inclusion map.

Step 2.1. By slightly abusing the notation, let [e]−→
Ω

:= {ω ∈ Ω | e ∈1 ω} for each e ∈ L
(it turns out that [·]−→

Ω
= [·] ∩ Ω). Let D := {[e]−→

Ω
∈ P(Ω) | e ∈ L}. I show (Ω,D)

is a κ-algebra. First, Ω = [S]−→
Ω
∈ D and ∅ = [∅]−→

Ω
∈ D. Second, [¬e]−→

Ω
= ([e]−→

Ω
)c

follows because ω ∈ [¬e]−→
Ω

iff (¬e) ∈1 ω iff e 6∈1 ω iff ω ∈ ([e]−→
Ω

)c. Third, I show
[
∧
E ]−→

Ω
=
⋂
e∈E [e]−→Ω for any E ∈ P(L) with 0 < |E| < κ. Indeed, ω ∈

⋂
e∈E [e]−→Ω iff

e ∈1 ω for all e ∈ E iff
∧
E ∈1 ω iff ω ∈ [

∧
E ]−→

Ω
.

Step 2.2. Define Θ : Ω→ S as follows: for each ω ∈ Ω, let Θ(ω) be the unique s ∈ S
with s ∈0 ω. By construction, it is a well-defined map. I show that the map Θ is
a measurable map such that (Θ)−1(E) = [E]−→

Ω
for each E ∈ Aκ(S). If ω ∈ [E]−→

Ω
,

then E ∈1 ω. Hence, Θ(ω) ∈ E, i.e., ω ∈ Θ−1(E). Conversely, if ω ∈ Θ−1(E) then
Θ(ω) ∈ E, and thus E ∈1 ω. Hence, ω ∈ [E]−→

Ω
.

Step 2.3. Fix i ∈ I, and define i’s belief operator Bi : D → D by: Bi([e]−→Ω ) := [βi(e)]−→Ω
for each [e]−→

Ω
∈ D. I show Bi is well-defined. If [e]−→

Ω
= [f ]−→

Ω
, then [(e ↔ f)]−→

Ω
= Ω.

This implies [(βi(e)↔ βi(f))]−→
Ω

= Ω. Thus, [βi(e)]−→Ω = [βi(f)]−→
Ω

.
Next, I show that Bi inherits assumptions on beliefs made in the given cate-

gory. For Necessitation, Ω = [βi(S)]−→
Ω

= Bi([S]−→
Ω

) = Bi(Ω). For Monotonicity,
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take [e]−→
Ω
, [f ]−→

Ω
∈ D with [e]−→

Ω
⊆ [f ]−→

Ω
. Then, [e → f ]−→

Ω
= Ω. It follows that

[βi(e)→ βi(f)]−→
Ω

= Ω, i.e., [βi(e)]−→Ω ⊆ [βi(f)]−→
Ω

. Thus, Bi([e]−→Ω ) ⊆ Bi([f ]−→
Ω

).
For λ-Conjunction, take E ∈ P(L) with 0 < |E| < λ. If ω ∈

⋂
e∈E Bi([e]−→Ω ) =

[
∧
e∈E βi(e)]−→Ω then

∧
e∈E βi(e) ∈1 ω. Since (

∧
e∈E βi(e) → βi(

∧
E)) ∈1 ω, it follows

βi(
∧
E) ∈1 ω, i.e., ω ∈ [βi(

∧
E)]−→

Ω
= Bi(

⋂
e∈E [e]−→Ω ). For the Kripke property, ω ∈

Bi([e]−→Ω ) for any (ω, [e]−→
Ω

) ∈ Ω×D with
⋂
{[f ]−→

Ω
∈ D | ω ∈ Bi([f ]−→

Ω
)} ⊆ [e]−→

Ω
.

For Consistency, if ω ∈ Bi([e]−→Ω ) = [βi(e)]−→Ω then βi(e) ∈1 ω. Since (βi(e) →
(¬βi)(¬e)) ∈1 ω, it follows (¬βi)(¬e) ∈1 ω, i.e., ω ∈ [(¬βi)(¬e)]−→Ω = (¬Bi)(¬[e]−→

Ω
).

For Truth Axiom, if ω ∈ Bi([e]−→Ω ) = [βi(e)]−→Ω then βi(e) ∈1 ω. Since (βi(e)→ e) ∈1 ω,
it follows e ∈1 ω, i.e., ω ∈ [e]−→

Ω
. For Positive Introspection, if ω ∈ Bi([e]−→Ω ) = [βi(e)]−→Ω

then βi(e) ∈1 ω. Since (βi(e) → βiβi(e)) ∈1 ω, it follows βiβi(e) ∈1 ω, i.e.,
ω ∈ [βiβi(e)]−→Ω = BiBi([e]−→Ω ). The proof for Negative Introspection is similar.

Step 2.4. So far,
−→
Ω := 〈(Ω,D), (Bi)i∈I ,Θ〉 is shown to be a belief space of the

given category. Finally, I demonstrate that the description map D :
−→
Ω →

−→
Ω∗ is

an inclusion map (consequently,
−→
Ω is non-redundant and Ω ⊆ Ω∗) by showing that

[·]−→
Ω

: L → D, viewed as a mapping, coincides with the semantic interpretation

function J·K−→
Ω

(consequently,
−→
Ω is minimal).

I show by induction that [·]−→
Ω

= J·K−→
Ω

. First, fix E ∈ Aκ(S). Then, ω ∈ JEK−→
Ω

=
Θ−1(E) iff Θ(ω) ∈ E iff ω ∈ [E]−→

Ω
. Second, suppose JeK−→

Ω
= [e]−→

Ω
. Then, ω ∈ J¬eK−→

Ω
=

¬JeK−→
Ω

iff ω 6∈ JeK−→
Ω

iff ω 6∈ [e]−→
Ω

iff ω ∈ [¬e]−→
Ω

. Also, Jβi(e)K−→Ω = Bi(JeK−→Ω ) = Bi([e]−→Ω ) =
[βi(e)]−→Ω . Third, suppose JeK−→

Ω
= [e]−→

Ω
for all e ∈ E with E ∈ P(L) and 0 < |E| < κ.

Then, ω ∈ J
∧
EK−→

Ω
=
⋂
e∈EJeK−→Ω iff ω ∈

⋂
e∈E [e]−→Ω = [

∧
E ]−→

Ω
.

I show that D(ω) = ω for all ω ∈ Ω. First, e ∈1 D(ω) iff D(ω) ∈ [e] iff ω ∈
D−1([e]) = JeK−→

Ω
= [e]−→

Ω
iff e ∈1 ω. Second, s ∈0 ω iff s = Θ(ω) = Θ∗(D(ω)) iff

s ∈0 D(ω). Hence, D is an inclusion map.

A.3 Section 5

Proof of Corollary 2. Construct
−→
Ω∗ := 〈(Ω∗,D∗), (B∗pi )(i,p)∈I×[0,1],Θ

∗〉, similarly to the

proof of Theorem 1. The set Ω∗ is not empty (consider
−→
{s}). To see that

−→
Ω∗ is

terminal, it suffices to show that the p-belief operators B∗pi satisfy the properties
specified in Definition 10 (2).

First, (2a), (2b), (2d), and (2h) follow from Lemma A.1 (1a). Next, (2c) follows
from Lemma A.1 (2a). Next, (2g) follows from Lemma A.1 (2a) and (3a).

Next, (2e) and (2f) follow from the following variant of Lemma A.1 (1a). Let
f−→

Ω
: D2 → D and g−→

Ω
: D2 → D be defined in each probabilistic-belief space

−→
Ω and satisfy, for any measurable map ϕ : (Ω,D) → (Ω′,D′), ϕ−1f−→

Ω′
(E ′, F ′) =

f−→
Ω

(ϕ−1(E ′), ϕ−1(F ′)) and ϕ−1g−→
Ω′

(E ′, F ′) = g−→
Ω

(ϕ−1(E ′), ϕ−1(F ′)) for all E ′, F ′ ∈ D′.
If f−→

Ω
(E,F ) ⊆ g−→

Ω
(E,F ) (for all E,F ∈ D) for every probabilistic-belief space

−→
Ω ,

then f−→
Ω∗

([e], [f ]) ⊆ g−→
Ω∗

([e], [f ]) for all [e], [f ] ∈ D∗.
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For (2i), if [m∗B∗i (ω
∗)] ⊆ [e] then [mBi(ω)] ⊆ D−1[e] and thus ω ∈ B1

i (D
−1[e]) =

D−1B∗1i ([e]), where a probabilistic-belief space
−→
Ω and ω ∈ Ω satisfy ω∗ = D(ω).

To prove Proposition 4, I show the following preliminary result.

Lemma A.2 (Extension of p-Belief Operators). Let (Ω,D) be an ℵ0-algebra, and
let (Bp

i )p∈[0,1] be a collection of player i’s p-belief operators Bp
i : D → D satisfying

Definition 10 (2). Then, there is a unique collection (B
p

i )p∈[0,1] of p-belief operators

B
p

i : σ(D)→ σ(D) satisfying Definition 10 (2) and B
p

i |D = Bp
i .

Proof of Lemma A.2. In this proof, denote explicitly by ∆(Ω,D) the set of countably-
additive probability measures on the ℵ0-algebra (Ω,D). Denote by mBi : (Ω,D) →
(∆(Ω,D),Aℵ0({{µ ∈ ∆(Ω,D) | µ(E) ≥ p} | (E, p) ∈ D × [0, 1]})) the measurable
type mapping associated with (Bp

i )p∈[0,1]. That is, mBi(ω)(E) := sup{p ∈ [0, 1] | ω ∈
Bp
i (E)} for each E ∈ D.

To construct B
p

i , let mBi(ω) ∈ ∆(Ω, σ(D)) be the unique Carathéodory extension
of mBi(ω) ∈ ∆(Ω,D). Denote by Σ := σ({{µ ∈ ∆(Ω, σ(D)) | µ(E) ≥ p} | (E, p) ∈
σ(D)× [0, 1]}) the σ-algebra on ∆(Ω, σ(D)). By Heifetz and Samet (1998b, Lemma
4.5), Σ = σ({{µ ∈ ∆(Ω, σ(D)) | µ(E) ≥ p} | (E, p) ∈ D × [0, 1]}).

I show mBi : (Ω, σ(D)) → (∆(Ω, σ(D)),Σ) is measurable. For each (E, p) ∈
D × [0, 1], it follows from {ω ∈ Ω | mBi(ω)(E) ≥ p} = {ω ∈ Ω | mBi(ω)(E) ≥ p}
that m−1

Bi
({µ ∈ ∆(Ω, σ(D)) | µ(E) ≥ p}) ∈ D. Hence, define B

p

i (E) := {ω ∈ Ω |
mBi(ω)(E) ≥ p} ∈ σ(D) for each (E, p) ∈ σ(D) × [0, 1]. One can show that the
collection (B

p

i )p∈[0,1] satisfies Definition 10 (2) and B
p

i |D = Bp
i .

To show uniqueness, let B̃p
i be an extension. If ω ∈ B̃p

i (E), then mBi(ω)(E) =
mB̃i

(ω)(E) ≥ p. Thus, ω ∈ Bp

i (E). The converse holds similarly.

Proof of Proposition 4. For ease of notation, denote LIλ = LIλ(Aκ(S)). Also, denote
L = LIκ. Let (Lα)κα=0 be the auxiliary sequence that generates L as in Remark 3.

Define [LIλ] := {[e] ∈ D∗ | e ∈ LIλ}. As in Lemma 1, [LIλ] is an algebra on Ω∗. Since
LIλ ⊆ L and since D∗ is a σ-algebra, σ([LIλ]) ⊆ D∗. To prove the converse set inclusion,
I show [e] ∈ σ([LIλ]) for all e ∈ L. To that end, I first establish B∗pi ([e]) ∈ σ([LIλ])
for any [e] ∈ σ([LIλ]), i.e., B∗pi |σ([LIλ]) : σ([LIλ]) → σ([LIλ]). Applying Lemma 3 to

B∗pi |[LIλ] : [LIλ] → [LIλ], the operator B∗pi |[LIλ] satisfies Definition 10 (2) (with the

slight modification that events are restricted to [LIλ]). It follows from Lemma A.2
that B∗pi |[LIλ] uniquely extends to σ([LIλ]), and it coincides with B∗pi |σ([LIλ]). Then,

B∗pi |σ([LIλ]) : σ([LIλ])→ σ([LIλ]).
Now, I show [e] ∈ σ([LIλ]) for all e ∈ L by induction on the construction of L (recall

Remark 3). For α = 0, [E] ∈ σ([LIλ]) for all E ∈ L0 = Aκ(S). Suppose [e] ∈ σ([LIλ])
for all e ∈

⋃
β<α Lβ. For any e ∈

⋃
β<α Lβ, [βpi (e)] = B∗pi |σ([LIλ])([e]) ∈ σ([LIλ]) (note

that βpi (e) is the (syntactic) expression for “i p-believes e”). Thus, [e] ∈ σ([LIλ]) for all
e ∈ L′α. Then, [¬e] = ¬[e] ∈ σ([LIλ]) for any e ∈ L′α. Also, [

∧
F ] =

⋂
e∈F [e] ∈ σ([LIλ])

for any F ⊆ L′α with 0 < |F| < κ(= ℵ1).
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A.4 Section 6

Proof of Corollary 3. In each belief space (with a common belief operator), identify
the common belief operator as the belief operator of a hypothetical player who rep-
resents common belief. As in Section 3, construct a candidate terminal κ-belief space−→
Ω∗ = 〈(Ω∗,D∗), (B∗i )i∈I , C∗,Θ∗〉. For any belief space

−→
Ω = 〈(Ω,D), (Bi)i∈I , C,Θ〉,

D−1C∗[·] = CD−1[·]. To show that
−→
Ω∗ is terminal, it suffices to show that C∗ is a

common belief operator: C∗[e] = max{[f ] ∈ J ∗I | [f ] ⊆ B∗I [e]} for any [e] ∈ D∗.
Let ω∗ ∈ C∗[e]. There are a belief space

−→
Ω and a state ω ∈ Ω with ω∗ = D(ω).

Thus, ω ∈ D−1C∗[e] = CD−1[e]. Since CD−1[e] ⊆ BID
−1[e] = D−1B∗I [e], ω

∗ =
D(ω) ∈ B∗I [e]. Thus, C∗[e] ⊆ B∗I [e]. To show C∗[e] ∈ J ∗I , take any [f ] ∈ D∗ with

C∗[e] ⊆ [f ]. Take ω∗ ∈ C∗[e]. There are a belief space
−→
Ω and a state ω ∈ Ω

with ω∗ = D(ω). Since CD−1[e] = D−1C∗[e] ⊆ D−1[f ], it follows D−1C∗[e] =
CD−1[e] ⊆ BID

−1[f ] = D−1B∗I [f ]. Thus, ω∗ = D(ω) ∈ B∗I [f ]. It follows that
C∗[e] ⊆ max{[f ] ∈ J ∗I | [f ] ⊆ B∗I [e]}.

To get the converse set inclusion, take any [f ] ∈ J ∗I with [f ] ⊆ B∗I [e]. If ω∗ ∈ [f ],

then there are a belief space
−→
Ω and a state ω ∈ Ω with ω ∈ D−1[f ] ⊆ D−1B∗I [e] =

BID
−1[e]. For the belief space

−→
Ω , consider

−→
Ω′ = 〈(Ω,D′), (Bi|D′)i∈I , C|D′ ,Θ〉 with

D′ = D−1(D∗). One can show that
−→
Ω′ is a belief space and that the identify map

idΩ :
−→
Ω →

−→
Ω′ is a morphism (see also Remark 7 in Section 7.2). Then, D−→

Ω
= D−→

Ω′
◦idΩ.

Since one can retake ω∗ = D−→
Ω′

(ω), without loss, assume D = D−1(D∗).
To establish ω∗ ∈ C∗[e], it suffices to show thatD−1[f ] ∈ JI , because it implies ω ∈

D−1[f ] ⊆ C(D−1[e]) = D−1C∗[e]. Take any E ′ ∈ D = D−1(D∗) with D−1[f ] ⊆ E ′.
Without loss, one can assume E ′ = D−1[e′] for some [e′] ∈ D∗ with [f ] ⊆ [e]′, because
D−1[e′ ∨ f ] = D−1([e]′ ∪ [f ]) = D−1[e′] ∪ D−1[f ] = D−1[e′] = E ′. Since [f ] ∈ J ∗I , it
follows [f ] ⊆ B∗I [e

′]. Thus, D−1[f ] ⊆ D−1B∗I [e
′] = BID

−1[e′] = BI(E
′).

Proof of Lemma 5. Define an operator g :
∏

i∈I P(Ai) →
∏

i∈I P(Ai) as follows: for
any X = (Xi)i∈I ∈

∏
i∈I P(Ai), let

g(X) :=
∏
i∈I

{ai ∈ Xi | ai is not B-dominated given X−i}.

Observe that g is monotone: for any X = (Xi)i∈I and Y = (Yi)i∈I , if Xi ⊆ Yi for all
i ∈ I, then g(X) ⊆ g(Y ). This is because if ai ∈ Xi ⊆ Yi is B-dominated given Y−i
then it is B-dominated given X−i.

Let (Aβ)β be a process of iterated elimination of B-dominated actions. I show by
induction that, for any T ∈

∏
i∈I P(Ai) with g(T ) = T , T ⊆ Aβ for all β. Fix such

T . For β = 0, T ⊆ A = A0 follows by definition. For some β = γ + 1, suppose that
T ⊆ Aγ. Since g is monotone, it follows that T = g(T ) ⊆ g(Aγ) ⊆ Aβ. For a non-zero
limit ordinal β, if T ⊆ Aγ for all γ < β then T ⊆ Aβ =

⋂
γ:γ<β A

γ. Thus, terminal
sets of different processes include each other so that they are all the same.
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A.5 Section 7

Proof of Proposition 7. Part (1). Let ϕ :
−→
Ω →

−→
Ω′ be a morphism. In a similar way

to Heifetz and Samet (1998a), I show by induction that Cα = ϕ−1(C ′α) for all α. For
α = 0, C0 = ϕ−1(C ′0) follows because (Θ)−1(E) = ϕ−1((Θ′)−1(E)) for any E ∈ Aκ(S).
Suppose Cβ = ϕ−1(C ′β) for all β < α. Then,

Cα = Aκ({ϕ−1(E ′) ∈ D | E ′ ∈
⋃
β<α

C ′β} ∪
⋃
i∈I

{ϕ−1(B′i(E
′)) ∈ D | E ′ ∈

⋃
β<α

C ′β})

= ϕ−1(Aκ({E ′ ∈ D | E ′ ∈
⋃
β<α

C ′β} ∪
⋃
i∈I

{B′i(E ′) ∈ D | E ′ ∈
⋃
β<α

C ′β})) = ϕ−1(C ′α).

The first and last equations follow from the definitions of Cα and C ′α, respectively.
The second equation follows because ϕ−1 commutes with Aκ(·). Then, C ′α = C ′α+1

implies Cα = Cα+1. Hence, if the κ-rank of
−→
Ω′ is α then that of

−→
Ω is at most α.

Part (2). Fix a λ-belief space
−→
Ω , where λ ≥ κ. Let Dα := Aκ({JeK−→Ω ∈ D | e ∈ Lα})

for each α ≤ κ, where (Lα)κα=0 is defined as in Remark 3 so that L = Lκ. I show
Dα = Cα for all α ≤ κ. For α = 0, D0 = {Θ−1(E) ∈ D | E ∈ Aκ(S)} = C0. If Dβ = Cβ
for all β < α, then Dα = Aκ((

⋃
β<αDβ) ∪

⋃
i∈I{Bi(JeK) ∈ D | JeK ∈

⋃
β<αDβ}) = Cα.

Hence, Cκ = Dκ = {JeK−→
Ω
∈ D | e ∈ L}, implying Cκ = Cκ+1, i.e., the κ-rank of

−→
Ω is

at most κ.

Proof of Proposition 8. Part (1). Since the λ-belief space
−→
Ω∗λ is also a κ-belief space,

there is a unique morphism D−→
Ω∗λ

:
−→
Ω∗λ →

−→
Ω∗κ, which takes the following form. While

each ω∗ = {s ∈ S | s ∈0 ω
∗} t {e ∈ LIλ(Aλ(S)) | e ∈1 ω

∗} ∈ Ω∗λ consists of the unique
nature state s and expressions e ∈ LIλ(Aλ(S)) that obtain, D−→

Ωλ
(ω∗) = {s ∈ S | s ∈0

ω∗} t {e ∈ LIκ(Aκ(S)) | e ∈1 ω
∗} consists of the same unique nature state s and

expressions e ∈ LIκ(Aκ(S)) (observe LIκ(Aκ(S)) ⊆ LIλ(Aλ(S))) that obtain. Thus,
D−→

Ωλ
is a surjective morphism. Hence, |Ω∗κ| ≤ |Ω∗λ|.

Part (2). To simplify the proof, I make the following assumptions. Since the proof
does not depend on the cardinality of I, let I = {1, 2}. Next, by the (second)
remark following Definition 7, assume all the properties of beliefs in Definition 2.
Next, assume (S,S) = ({s0, s1},P(S)) (the proof goes through by taking s1 ∈ E
and s0 ∈ Ec for E in the statement of the proposition). First, the knowledge space
−→
Ω constructed by Hart, Heifetz, and Samet (1996) is a non-redundant κ-knowledge
space with |Ω| ≥ 2ℵ0 . Since the morphism D−→

Ω
is injective, 2ℵ0 ≤ |Ω| ≤ |Ω∗κ|. Second,

Heifetz and Samet (1998a, Theorem 2.5) construct a non-redundant κ-knowledge

space
−→
Ω′ with |Ω′| = κ. Since the morphism D−→

Ω′
is injective, κ = |Ω′| ≤ |Ω∗κ|.

Remark A.1 (Extension of the Domain). Let (Ω,D) be a κ-algebra. Let Bi : D → D
satisfy the Kripke property. Define Bi : P(Ω)→ P(Ω) by Bi(E) := {ω ∈ Ω | bBi(ω) ⊆
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E} for each E ∈ P(Ω). By construction, Bi satisfy the Kripke property. Also, Bi

inherits Consistency, Truth Axiom, Positive Introspection, and Negative Introspection
from Bi. Moreover, Bi = Bi|D and bBi = bBi .
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