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Abstract

This paper studies implications of the consistency conditions among prior,
posteriors, and information sets on introspective properties of qualitative belief
induced from information sets. The main result reformulates the consistency
conditions as: (i) the information sets, without any assumption, almost surely
form a partition; and (ii) the posterior at a state is equal to the Bayes condi-
tional probability given the corresponding information set. The main implica-
tion of this result is to provide a tractable epistemic model which dispenses with
the technical assumptions inherent in the standard epistemic model such as the
countable number of information sets. Applications are agreement theorem,
no-trade theorem, and the epistemic characterization of correlated equilibria.
Implications are as follows. First, since qualitative belief reduces to fully intro-
spective knowledge in the standard environment, a care must be taken when
one studies non-veridical belief or non-introspective knowledge. Second, an
information partition compatible with the consistency conditions is uniquely
determined by the posteriors. Third, qualitative and probability-one beliefs
satisfy truth axiom almost surely. The paper also sheds light on how the addi-
tivity of the posteriors yields negative introspective properties of beliefs.
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1 Introduction

Agents in a strategic situation have two forms of beliefs. One is probabilistic beliefs,
represented by a notion of types (Harsanyi, 1967-1968). The other is qualitative
belief (or knowledge, if it is truthful), represented by information sets (Aumann,
1976). Consider, for instance, a dynamic game where each agent has knowledge
about her past observations on the play, while she has probabilistic beliefs about
her opponents’ future plays. Qualitative belief plays a role when it comes to, say,
studying consequences of common belief in rationality instead of common knowledge
of rationalityE] These two kinds of beliefs are well studied in a rather separate manner,
and somewhat surprisingly, little has been known about how reasoning based on one
form of beliefs influences the other.

This paper examines introspective properties of qualitative belief induced by in-
formation sets from its relation with prior and posterior beliefs. First, I link prior and
posteriors in a way such that the prior probability of an event coincides with the ex-
pectation of the posterior probabilities of the event with respect to the prior. Second,
I relate information sets and posteriors. An agent qualitatively believes (or knows)
her own probabilistic beliefs. Also, if the agent qualitatively believes (or knows) some-
thing, then she believes it with probability one. I study how these linkages themselves
yield introspective properties on qualitative beliefs.

Consider an agent, Alameda, who faces uncertainty about underlying states of the
world. On the one hand, Alameda has a prior countably-additive probability measure.
She also has a posterior probability measure at each realized state. These dictate her
quantitative beliefs. While I analyze how the additivity of each posterior affects her
reasoning, for now I assume each posterior to be countably additive. On the other
hand, Alameda has a mapping, called a possibility correspondence. It associates, with
each state of the world, the set of states that she considers possible (the information
set) at that state. I, as an analyst, derive properties of information sets, instead of
directly assuming them. The framework is fairly parsimonious.

The main result (Theorem |1]) restates the consistency conditions as: (i) Alameda’s
information sets form a partition almost surelyﬂ and (ii) her posterior at each state
coincides with the Bayes conditional probability given her corresponding information
set. While information sets are usually exogenously assumed to form a partition, the
main result demonstrates that the consistency conditions on the agent’s qualitative

1See, for instance, Dekel and Gul (1997) for the importance of capturing both knowledge and
probabilistic beliefs. See, for example, Stalnaker (1994) for using qualitative and probabilistic beliefs
for studying solution concepts of games. More recently, Bonanno (2008]), Bonanno and Tsakas
(2018), Fukuda (2024), Guarino and Ziegler (2022), Hillas and Samet (2020]), and Samet (2013)
study epistemic characterizations of solution concepts of games where agents possess qualitative
beliefs, and show that common belief in rationality and common knowledge of rationality may lead
to different predictions.

2For the precise definition of almost sureness in this context, see Section [2.3.4 Section [3]discusses
the statement of the main theorem.



and quantitative beliefs alone determine Bayes updating.

The main implication of Theorem [1|is the following: the framework of this paper
provides a tractable epistemic model which dispenses with the technical assumption
inherent in the standard partitional model of knowledge and belief, namely, the one
that the number of information sets (partition cells) is at most countable. Thus, the
paper can provide generalizations of previously known results on a state space model
of knowledge and belief in a tractable manner. Especially, the paper extends Au-
mann (1976))’s agreement theorem, Milgrom and Stokey (1982)’s no-trade theorem,
and Aumann (1987)’s epistemic characterization of correlated equilibria on a general
measurable state space. As Green (2012)) observes, the no-trade result of Milgrom and
Stokey ((1982)), which is established under the assumption that the state space is finite,
has been applied to a setting in which a state space is a continuum in the literature
of market microstructure and rational-expectations equilibria. This is problematic
because, the literature has not been able to establish even Aumann (1976))’s agree-
ment theorem, on which the no-trade theorem rests, in a general (continuum) state
space. Theorem [I| guarantees that the above mentioned applications hold in a gen-
eral state spaceﬁ The framework of this paper indeed admits the case in which each
agent receives a normally distributed signal (which features uncountably many infor-
mation sets) as in the literature of market microstructure and rational-expectations
equilibriaﬁ

While the contribution of the paper is the main result and its applications, the
framework of the model allows one to derive a variety of theoretical implications. The
first implication (Corollary (1)) is that the consistency conditions uniquely determine
the posterior at each state as the Bayes conditional probability given the associated
information set.

The second implication (Corollary [2)) is on the uniqueness of an information par-
tition (i.e., partitional information sets) compatible with the consistency conditions
in a standard model. This result justifies the use of the partition generated by the
posteriors in the previous literature (e.g., Battigalli and Bonanno, [1999; Halpern,
1991; Tan and Werlang, [1988; Vassilakis and Zamir, |1993)): if an agent is certain
of her own posterior (Harsanyi, [1967-1968; Mertens and Zamir, [1985)), then, at each
state, she has to be able to infer the set of states that generate the realized posterior.
The resulting sets form the unique information partition.

3The framework of this paper imposes certain conditions on agents’ qualitative beliefs (i.e., in-
formation sets) and quantitative beliefs (i.e., posterior beliefs) on the general measurable space.
Precisely, see Remark [I] for the summary of the technical conditions.

4Green (2012, Conjecture) in fact conjectures that the agreement theorem holds in a general
(continuum) state space. While the agreement theorem in this paper (Proposition [2)) is technically
not a generalization or a special case of that in Green (2012, Propositions 14 and 15) due to the
differences in the frameworks and the formulations, this paper shows that the agreement theorem
and the no-trade theorem hold in a general state space under fairly natural consistency conditions.
In fact, under the framework of this paper, technical topological or measure-theoretic assumptions
on an underlying state space are not needed.



The third implication (Corollary [3)) is on the introspective properties of qualita-
tive belief. To see this, Alameda’s introspective abilities in her qualitative belief are
reflected in properties of her information sets. When her information sets form a
partition, her qualitative belief becomes knowledge (true belief) with full introspec-
tion. Truth axiom obtains: she can only know what is true. Her knowledge satisfies
positive introspection: if she knows something then she knows that she knows it. Her
knowledge also satisfies negative introspection: if she does not know something then
she knows that she does not know it.

Now, the third implication is that, in a standard countable model where the prior
puts positive probability to every state, qualitative belief reduces to fully introspec-
tive knowledge. The consistency conditions alone determine this property, and thus
qualitative belief reduces to fully introspective knowledge with no a priori assump-
tion on qualitative belief. Also, the notions of qualitative and probability-one beliefs
coincide, and each form of beliefs inherits the properties of the other form.

Corollary [3] itself yields the following three additional implications. Its first im-
plication is on the evaluation of a solution concept of a game. If the analysts assume
the consistency conditions among prior, posteriors, and information sets, qualitative
belief reduces to knowledge even though the analysts would like to study, say, impli-
cations of common belief in rationality instead of common knowledge of rationality.
That is, not only does qualitative belief reduce to knowledge for individual agents,
but also common qualitative belief reduces to common knowledge (Corollary .

On a related point, second, if the analysts attempt to represent non-introspective
knowledge violating negative introspection, then such non-introspective knowledge
turns out to reduce to fully introspective knowledge. Such non-introspective knowl-
edge is associated with unawareness: not only Alameda does not know an event F,
but also she does not know that she does not know E (Modica and Rustichini, |1994,
1999). Previous negative results on describing a non-trivial form of unawareness in
a standard possibility correspondence model are based on some direct link between
qualitative belief (knowledge) and unawareness (e.g., Dekel, Lipman, and Rustichini,
1998; Modica and Rustichini, 1994). In contrast, Corollary 4| demonstrates that a
link between qualitative and probabilistic beliefs alone makes qualitative belief fully
introspective knowledge and thus makes a standard state-space model with knowledge
and probabilistic beliefs incapable of describing a non-trivial form of unawareness.

Third, still another implication of Corollary |3|is the violation of consistency be-
tween ex-ante and ex-post analyses in a non-partitional model. Suppose that the
analysts aim to study non-introspective knowledge of a “boundedly rational” agent
who is ignorant of her own ignorance. Assume that knowledge implies probability-one
belief. Also, assume that the agent is positively introspective on her own probabilistic
beliefs with respect to her knowledge (i.e., if she believes an event with probability
at least p (i.e., she p-believes the event), then she knows that she p-believes the
event) in the same spirit as she has positive introspection on knowledge. Then, her
prior and posteriors must violate the consistency condition, as the previous studies of



non-partitional knowledge have demonstrated the inconsistency between ex-ante and
ex-post evaluations of a decision problem.

The final and fourth implication (Corollary @ is that, while qualitative and
probability-one beliefs may differ, both satisfy truth axiom almost surelyP| Like-
wise, common qualitative belief and common probability-one belief are also almost
surely truelf]

The paper also sheds light on the role of additivity in introspection (Propositions
and @ Now, suppose that the agent’s posteriors are non-additive. First, if she does
not p-believe an event F, then she may not be certain that she does not p-believe E.
An agent with additive posteriors, however, would be certain of her own probabilistic
ignorance. Second, additivity also implies negative introspection on probabilistic
beliefs with respect to qualitative belief. If the agent does not p-believe an event then
she may not qualitatively believe that she does not p-believe it. Again, an agent with
additive posteriors would qualitatively believe her own probabilistic ignorance.

While the main focus of this paper is how the posterior probabilities are derived
from the prior probability measure and information sets, I also demonstrate in Propo-
sition 8 that the similar consistency conditions indeed characterize conditional expec-
tations. Namely, using the main result, I show that an agent’s conditional expectation
is derived as the expectation with respect to the Bayes conditional probability given
her information set if prior, conditional expectations, and information sets satisfy the
similar consistency conditions. Interestingly, since a posterior probability of an event
is a conditional expectation of the indicator of the event, the consistency condition
between a prior and posteriors turns out to be the law of iterated expectations. The
prior expectation of (the indicator of) an event E is equal to the prior expectation of
the conditional expectations of (the indicator of) E.

The paper is organized as follows. The rest of this section discusses the related
literature. Section |2 provides the framework. Section [3|demonstrates the main result.
Section [4] studies special cases to show that the framework of this paper encompasses
the standard model in the literature. Section [5{provides economic and game-theoretic
applications. Section [6] studies theoretical implications of the main result. Section
provides further discussions and the concluding remarks. Proofs are in Appendix [A]
Appendix [B| provides additional supplementary examples.

Related Literature

This paper is related to the following four strands of literature: (i) derivation of
Bayes updating from consistency between prior and posterior beliefs, (ii) interaction

SFor example, an agent believes with probability one (i.e., she is certain) that a random draw
from [0,1] is an irrational number but she does not know it (Monderer and Samet, [1989)). Recall,
however, that Corollary [3] shows that, in a standard countable full-support environment, qualitative
and probability-one beliefs coincide.

SFor the precise definition of almost sureness in this context, see Section m Section
discusses the statement of the corollary.



of knowledge and beliefs, (iii) non-partitional knowledge models, and (iv) the role of
additivity in probabilistic reasoning.

In the first strand of literature on Bayes updating, the main result (Theorem
is closely related to Gaifman (1988)), Mertens and Zamir (1985)), and Samet (1999) in
a purely probabilistic setting. In a single-agent perspective, these papers study how
the consistency conditions between prior and posterior probabilities lead to Bayes
updating. Section |3| will discuss how these papers relate to the main result (Theorem
[). As in Mertens and Zamir (1985)), the studies of existence of a common prior (e.g.,
Bonanno and Nehring, [1999; Feinberg, 2000; Golub and Morris, 2017; Heifetz, 20006}
Hellman, 2011; Morris, [1994; Nehring, [2001; Samet, 1998) also impose the consistency
condition that the prior coincides with the expectation of the posteriors with respect
to the prior.

The second is an extensive literature on the interaction between knowledge and
beliefs in artificial intelligence, computer science, economics, game theory, logic, and
philosophy. The consistency conditions between qualitative and probabilistic beliefs
imposed in this paper are fairly common in economics and game theory in such
contexts as epistemic characterizations of solution concepts for games, existence of
a common prior, and canonical structures of agents’ knowledge and beliefs (e.g.,
Aumann, 1999; Battigalli and Bonanno, [1999; Dekel and Gul, 1997; Meier, 2008).
The validity of individual consistency conditions between knowledge and beliefs (i.e,
“knowledge entails beliefs” and the knowledge of own beliefs) has been well studied
since Hintikka (1962)) and Lenzen (1978).

The third is on non-partitional knowledge that fails negative introspection. The
studies of non-partitional structures include implications of common knowledge such
as generalizations of agreement theorem of Aumann (1976), studies of solution con-
cepts (Brandenburger, Dekel, and Geanakoplos, 1992; Geanakoplos, 2021)), founda-
tions for information processing by “boundedly rational” agents (Bacharach, 1985;
Morris, |1996; Samet, 1990, |1992; Shin, 1993), and unawareness (Dekel, Lipman, and
Rustichini, 1998; Modica and Rustichini, |1994, 1999).[] See also Dekel and Gul (1997)).

Fourth, I turn to the role of additivity in probabilistic introspection. In the de-
cision theory literature, such papers as Ghirardato (2001) and Mukerji (1997)) study
foundations for non-additive beliefs in terms of an agent’s imperfect information pro-
cessing. Although the framework of this paper is quite different from these decision-
theoretic papers on non-additive subjective expected utility models, these and this
papers have the following similar intuition behind why the non-additivity is associ-
ated with the lack of introspection. An agent with non-additive beliefs cannot imagine
what the possible states of the world are in her fullest extent.

"Propositions and@ suggest that non-additivity may yield the violation of probabilistic negative
introspection: if the agent is not certain of an event, she may not be certain that she is not certain of
it. The implication of such violation of probabilistic negative introspection would also be interesting.



2 An Epistemic Model

This section defines the framework. Section defines an epistemic model, which
consists of a prior, posteriors, and information sets defined on a state space. Sec-
tion introduces the probabilistic and non-probabilistic belief operators from the
primitives of the model. Section defines the consistency conditions among prior,
posteriors, and information sets. Section provides examples.

2.1 An Epistemic Model

This subsection defines an epistemic model to capture quantitative and qualitative
beliefs of an agent. For ease of exposition, I start with presenting a single agent
model. N

An epistemic model (a model, for short) is a tuple Q := (Q, 3, u, P, t). First, ) is
a non-empty set of states of the world endowed with a o-algebra Y. Each element F
of ¥ is an event. I denote the complement of an event E by E°¢ or —F.

Second, p : ¥ — [0,1] is a prior countably-additive probability measure. Thus,
(Q, %, ) forms a probability space.

Third, P : Q — X is a possibility correspondence with the measurability condition
that {w € Q| P(w) C E} € ¥ foreach E € ¥. It associates, with each state w, the set
of states considered possible at that state. For each w € Q, T call P(w) the possibility
set (or the information set) at w. Note that P(w) is assumed to be an event about
which the agent herself reasons. The measurability condition will be used, in Section
[2.2] to introduce the qualitative belief operator. Thus, the possibility correspondence
P dictates the agent’s qualitative belief on (Q, ).

Fourth, ¢ : Q x ¥ — [0, 1] is a type mapping satisfying the following two measur-
ability conditions. The type mapping ¢ dictates the agent’s quantitative beliefs on
(Q,%).

The first measurability condition is: for each E € ¥, the mapping t(-, E) : Q —
[0, 1] satisfies (¢(-, E)) " ([p,1]) = {w € Q | t(w, E) > p} € X for all p € [0,1]. That is,
each t(-, ) : (£, %) — ([0, 1], Bjo,17) is measurable with respect to the Borel o-algebra
Bjo,1) on [0,1]. This assumption allows the agent to reason about whether her degree
of belief in an event £ is at least p. It will be used, in Section to define the
agent’s p-belief operators.

The second measurability condition is: [t(w)] ;== {w € Q | t(',) = t(w,")} € ¥
for all w € Q. Note that ¢(w',-) = t(w,-) means t(w', F) = t(w, E) for all E €
Y. T use similar abbreviations throughout the paper. The set [t(w)] consists of
states @ indistinguishable from w in that t(w,-) = t(@, -): the agent’s posteriors (i.e.,
quantitative beliefs) at w and @ coincide. Intuitively, if the agent is perfectly certain
of her quantitative beliefs (i.e., her type mapping t), then, at each state w, she would
be able to infer that the realization must be in [t(w)]. This second measurability
assumption ensures each [t(w)] to be an object of the agent’s beliefs.



I remark that if ¥ is generated by a countable algebra ¥ (i.e., an algebra which
has at most countably many events) and if each t(w, -) is continuous with respect to
both increasing and decreasing sequences of events and is monotone, then [t(w)] € ¥
automatically holdsf]

For each w € Q, call t(w, ) the type at w. If a state w realizes, the type t(w,-)
at w assigns, with each event E, the agent’s posterior (i.e., quantitative) belief in
E. The idea behind the type mapping ¢ : Q x 3 — [0, 1] is a Markov kernel when
each t(w, -) is a countably-additive probability measure (Gaifman, [1988; Samet, |1998|,
2000). Here, each type t(w, -) is assumed to be a general set function. I do not assume
any property of a set function on each type t(w,-) at this point, as I first study how
each type inherits the properties of the prior i by imposing the link between the prior
w1 and the type mapping ¢.

2.2 Quantitative and Qualitative Belief Operators

I introduce quantitative and qualitative belief operators in an epistemic model. The
agent’s quantitative beliefs are represented by p-belief operators induced by the type
mapping t, while her qualitative belief is represented by the qualitative belief operator
induced by her possibility correspondence P. I also define introspective properties of
quantitative and qualitative beliefs.

2.2.1 Quantitative Beliefs: p-Belief Operators

The agent’s quantitative beliefs are captured by p-belief operators (BP)ycp.1) (e-g.,
Monderer and Samet, 1989)). For each (E,p) € ¥ x [0,1], define B?(E) := {w € Q |
t(w, F) > p} € ¥. The event BP(E) is the set of states at which the agent p-believes
E i.e., she assigns probability at least p to F.

I cog)sider the following introspective property of quantitative beliefs. Namely, a
model Q satisfies Certainty of (p-)Beliefs if t(-, [t(-)]) = 1 (Gaifman, 1988; Mertens
and Zamir, 1985; Samet, (1999, [2000). Certainty of Beliefs states that the type at
state w puts probability one to the set of states indistinguishable from w according to
the type mapping t. To restate, if the agent has a perfect understanding of her own
type mapping, she would be able to infer that, at each state w, the true state is in
[t(w)] by unpacking the possible types![’|

If (F satisfies Certainty of Beliefs and if each ¢(w, -) is monotone (i.e, E C F implies
t(w,E) < t(w, F)), then one can show: (i) BP(-) € B'BP(-) and (ii) (—=B?)(:) C
BY(=BP)(-). Part (i) states that if the agent p-believes an event E then she 1-believes

8There is a countable algebra ¥y which generates Y if there is a countable set of events which
generates Y.

9Technically, Gaifman (1988) and Samet (1999) require ¢(-, [t(+)]) = 1 p-almost surely (i.e., u({w €
Q| t(w, [t(w)]) = 1}) = 1). This paper defines Certainty of Beliefs for each state for the conceptual
reason.



that she p-believes E. Part (ii), on the other hand, states that if the agent does
not p-believe an event E then she 1-believes that she does not p-believe E. Thus,
Certainty of Beliefs implies full introspection in the above sense.[zgl

I remark that if ¥ in a given model is generated by a countable algebra and if each
t(w, -) is a countably-additive probability measure, then it follows from Samet (2000,
Theorem 3) that the model satisfies Certainty of Beliefs if and only if (hereafter,
abbreviated as iff) B?(-) C B'B?(-).

2.2.2 Qualitative Belief: Qualitative Belief Operator

Next, I turn to the agent’s qualitative belief. The possibility correspondence P induces
the qualitative belief operator K : 3 — ¥ defined by K(F) :={w € Q| P(w) C E} €
¥ for each £/ € ¥. The event K (F) is the set of states at which the agent qualitatively
believes E. 1 often drop the mentioning of “qualitative” or “qualitatively” when it is
clear from the context.

The qualitative belief operator K always satisfies the following well-known proper-
ties: (i) Monotonicity: £ C F implies K(£) C K(F); (ii) (Countable) Conjunction:
Mnen K (E£r) € K(,,en £n); and (iii) Necessitation: K (£2) = €. Monotonicity states
that the agent believes any logical consequence of her beliefs. Countable Conjunction
states that the agent believes any countable conjunction of her beliefs. Necessitation
states that the agent believes any form of tautology €2 (e.g., £ U E°).

Other properties of the qualitative belief operator K correspond to properties of
the possibility correspondence P. The following four properties are well-known (e.g.,
Aumann, 1999; Dekel and Gul, [1997). First, K satisfies Truth Axiom (K(E) C E
for each E € X)) iff P is reflexive (i.e., w € P(w) for all w € ). Truth Axiom states
that if the agent believes an event E at a state then E is true at that state. Second,
K satisfies Consistency (K(E) C (=K)(—FE) for each E € X)) iff P is serial (i.e.,
P(-) # 0). Consistency states that if the agent believes an event E then she does not
believe its negation. Note that Truth Axiom implies Consistency. Third, K satisfies
Positive Introspection (K (-) € KK(-)) iff P is transitive (i.e., w’ € P(w) implies
P(w') € P(w)). Positive Introspection states that if the agent believes an event
then she believes that she believes it. Fourth, K satisfies Negative Introspection
(mK)() € K(=K)(+)) iff P is Euclidean (i.e., w' € P(w) implies P(w) C P(w")).
Negative Introspection states that if the agent does not believe an event then she
believes that she does not believe it.

The collection of information sets {P(w)},cq forms a partition of Q (i.e., it is
reflexive, transitive, and Euclidean) iff K satisfies Truth Axiom, Positive Introspec-
tion, and Negative Introspection. Note that Truth Axiom and Negative Introspection
imply Positive Introspection.

1OMoreover, the idea of Certainty of Beliefs plays an important role in the construction of a
universal Harsanyi type space (Mertens and Zamir, [1985)) to formalize the idea that each agent is
informed of her own type.



In the epistemic model, no such introspective assumption on P is imposed a priori.
This is in contrast to a standard partitional model of knowledge (e.g., Aumann, |1976)).
Thus, K need not be the “knowledge” operator that satisfies Truth Axiom, although I
denote the qualitative belief operator by K to distinguish it from the p-belief operator
BP. Instead of assuming axioms on P, I derive properties of P from how qualitative
and quantitative beliefs interact with each other.

2.3 Relations among Prior, Posteriors, and Information Sets

Throughout this subsection, fix a model ﬁ This subsection relates the primitives of
the model: (i) the prior p and the type mapping ¢ (i.e., prior and posterior beliefs)
and (ii) the type mapping ¢ and the possibility correspondence P (i.e., quantitative
and qualitative beliefs).

2.3.1 Invariance: Consistency between Prior and Posterior Beliefs

I assume the invariance condition on the prior and the type mapping stating that the
prior probability of an event F coincides with the expectation of the posteriors of E
with respect to the prior. Formally, the model satisfies Invariance if

n) = [t nd),

This consistency condition is especially used to characterize (existence of) a com-
mon prior as discussed in the Introduction. Note also that, in accordance with this
literature, one can define the prior p as a (countably-additive) probability measure
that satisfies the Invariance condition. Under Invariance, u(E) = 0 iff ¢t(-, E) = 0
p-almost surely.

2.3.2 Entailment and Self-Evidence of Beliefs: Consistency between Qual-
itative and Quantitative Beliefs

I introduce two introspective properties that relate qualitative and quantitative be-
liefs. These properties are commonly imposed in economics and game theory when
knowledge and probabilistic beliefs are present.

First, the model « satisfies Entadlment if t(-, P(-)) = 1. Entailment states that,
at each state, the agent assigns probability one to the set of states that she considers
possible at that state. Since w € K(P(w)), if each type t(w,-) is monotone then
Entailment is expressed, in terms of operators, as the stronger condition K (-) C B(-):
if the agent qualitatively believes an event then she 1-believes it["f] If each type
t(w,-) is monotone and if {w} € ¥ for all w € €, then Entailment implies that

HTf qualitative belief reduces to knowledge, then Entailment states that knowledge entails
probability-one belief (see, e.g., Battigalli and Bonanno, [1999; Dekel and Gul, [1997; Hintikka, 1962)).
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{w € Q| tw,{«'}) >0} C P(w). In words, the agent considers w’ possible at w
whenever she assigns positive probability to {w'} at that state. Also, Entailment
implies that P is serial (i.e., P(-) # (), which is equivalent to Consistency of K:
K() € (K=)()

Second, (1 satisfies Self-Evidence of (p-)Beliefs if &' € P(w) implies t(w,:) =
t(w',+), i.e., P(w) C [t(w)]. It provides a consistency requirement between the possi-
bility correspondence P and the type mapping t: if the agent considers w’ possible at
w, then her quantitative beliefs at w and w’ are identical. This condition is commonly
imposed in economics and game theory when qualitative belief reduces to knowledge.

I remark that Self-Evidence refers to the property that is established in Proposition
6] of Section 7.1} the model satisfies Self-Evidence of Beliefs iff (i) whenever the agent
p-beliefs an event, she qualitatively believes that she p-believes the event; and (ii)
whenever the agent does not p-believe an event, she qualitatively believes that she
does not p-believe the event.

I also remark that Entailment and Self-Evidence of Beliefs imply Certainty of
Beliefs, provided that each ¢(w, -) is monotone.

2.3.3 A Regular Model

With these definitions in mind, the main result (Theorem (1)) characterizes conditions
on a given model under which the agent’s type t(w, -) at each state coincides with the
Bayes conditional probabgty p(- | P(w)) given her information set at that state. To

that end, call the model @ regular if each t(w,-) is a countably-additive probability
measure and if the model satisfies Invariance (the consistency condition between the
prior and the type mapping), Entailment and Self-Evidence of Beliefs (¢(-, P(-)) =
1 and P(-) C [t(-)], which are the consistency conditions between qualitative and
quantitative beliefs). I also call a model proper if u(P(-)) > 0.

Figure (1| illustrates the regular model. The following remark also summarizes the
technical conditions on the given model (2.

Remark 1. Recall that for a tuple ﬁ = (0, X, u, P,t) to be an (epistemic) model, the
possibility correspondence P : 2 — ¥ and the type mapping ¢ : Q x ¥ — [0, 1] have
to satisfy the following technical conditions together with the underlying probability
space (2, %, u).

The possibility correspondence P satisfies the following two measurability condi-
tions. The first is that P induces a well-defined qualitative belief operator K : 3 — X
defined through K(F) := {w € Q | P(w) C E} € X for all E € X. This is a mea-
surability condition akin to the “upper-hemicontinuity” of a correspondence. The
second is that each P(w) is an event, i.e., P(w) € ¥ for each w € Q. On the one
hand, the justification of this paper for the second assumption is that the agent is
able to reason about her information set P(w) itself. On the other hand, this is
a non-trivial technical assumption. For instance, when {P(w)},cq forms a parti-
tion of the state space, it is well-known that the collection of “self-evident” events

11



A type mapping t(-,-) : Q@ x ¥ — [0, 1]
t(w,-) € A(Q)
(Quantitative Beliefs)

e Entailment
e Self-Evidence of Beliefs

e Invariance

Possibility Correspondence P : () — ¥

Prior 1 € A(€) (Qualitative Beliefs)

For any fixed w € €2,
p(P(w)Alt(w)]) =0

Figure 1: A Regular Epistemic Model (€2, ¥, i, P, t). The three primitives, the prior p,
the possibility correspondence P, and the type mapping ¢ on the state space (2, X)) are
depicted by a solid rectangle. The consistency conditions (Invariance, Entailment, and
Self-Evidence of Beliefs) are depicted by a two-way arrow between the corresponding
primitives. The assumptions on the primitives (including the consistency conditions)
are colored in red (A(f2) is the set of countably-additive probability measures on
(2,%)). The main result (Theorem [1| in Section [3) is anticipated by blue dashed
rectangles (P(w)Al[t(w)] is the symmetric difference between P(w) and [t(w)]).

J:={E €Y | EC K(E)} forms a sub-o-algebra (e.g., Aumann, [1999) [ If this
sub-o-algebra J is countably generated, then one can show (i) that each P(w) is the
atom of J at w, i.e,, Plw) =({F € J | w € E} (e.g., Fukuda, 2019) and (ii) that
P(w) € X for each w € Q| In each example in Section 2.4] it can be seen that the
collection of self-evident events [J generated from the possibility correspondence P
satisfies this sufficient condition[™]

Next, the type mapping t satisfies the following two conditions. The first is a

12Two remarks are in order. First, in the literature, an event E € X is self-evident (to the
agent) if the agent believes E whenever E holds (e.g., Monderer and Samet, [1989)). Second, the
collection J may not necessarily be the o-algebra generated by the partition P. Consider, for
example, the case with the most informative partition P(w) = {w} for each w € 2. While J = X,
the o-algebra generated by P is the countable-co-countable o-algebra. See, for instance, Dubra
and Echenique (2004), Fukuda (2019)), Hérves-Beloso and Monteiro (2013), Lee (2018)), and Tébids
(2021) for representing the information content of a partition by a set-algebra.

1See Hérves-Beloso and Monteiro (2013, Lemma 3) for the fact that an atom of a countably
generated g-algebra is a measurable set.

14This is because the Borel o-algebra is countably generated.
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standard measurability condition on each ¢(-, E) : Q — [0, 1], which induces a well-
defined p-belief operator BP : 3 — X: for each £ € ¥ and p € [0,1], BP(F) := {w €
Q| t(w, E) > p} € ¥. The second requires each [t(w)] :={w' € Q| t(w,-) = t(',")}
to be an event: [t(w)] € ¥ for each w € Q. As discussed, this second measurability
condition is met if, for instance, ¥ is countably generated and each t(w, -) is monotone
and continuous with respect to both increasing and decreasing sequences of events.

2.3.4 Almost Sureness

I provide two technical definitions. First, an event F is p-almost surely included in
an event F', denoted by E C,, F, if (£ \ F) = 0. Informally, the set of states w
which belong to E but which do not belong to F' (i.e., the set of states w that violate
“FE C F”) has measure zero according to p.

Second, an event F is p-almost surely equal to an event I, denoted by F =, I,
if W(EAF) =0, where A denotes the symmetric-difference operation (i.e., EAF :=
(E\F)U(F\E)). Thus, £ =, Fif(f) E C, Fand F C, E, as long as p is additive.
Informally, the set of states w that violate “E = F” (either w € E\ F or w € F'\ E)
has measure zero according to pu. Note that “u(P(w)Aft(w)]) = 07 in Figure [1| can
be rewritten as “P(w) =, [t(w)][7]

I remark that, in a proper regular model, (i) it turns out (as a consequence of
Theorem [1)) that p([t(-)]) = w([P(-)]) > 0; and (ii) w(E) = 0 iff ¢(-, E) = 0. Thus,
EC,Fiff ECy,,) F (ie., t(w, EAF) =0) for all w € .

2.3.5 An Interactive Epistemic Model

To conclude this subsection, I remark that one can easily incorporate a set of agents
into an epistemic model. Namely, let I be a non-empty countable set of agents.
An interactive epistemic model is (2, X, ), (Pi, t;)icr) such that (Q, %, u, P, t;) is a
model for each agent i € I.

2.4 Examples

Before presenting the main result, I provide examples for the following two purposes.
First, Example [1| shows that Entailment, Self-Evidence of Beliefs, and Invariance are
independent assumptions.

15The statements “E Cu F” and “E =, F” are also sometimes mentioned as “E C F' y-almost
surely” and “E = F p-almost surely,” respectively (e.g., Hoffmann-Jgrgensen, |1994; Monderer and
Samet, [1989). As depicted in Figure [I} part of Theorem |[I| asserts that, for each given w € ,
P(w) =, [t(w)]. Since the alternative notation “P(w) = [t(w)] p-almost surely” may be incorrectly
interpreted as p({w € Q | P(w) = [t(w)]}) = 1, T use the specific notation “P(w) =, [t(w)].” T am
grateful to an anonymous referee and the handling editor for pointing out this issue.
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Example 1. I provide three models in which one of Entailment, Self-Evidence of
Beliefs, and Invariance fails. Throughout the example, let (Q,3) = ({w;,ws, w3}, 2),
where 29 is the power set of ).

First, let = (3,3,0), let P(w) = {w} for each w € Q, and let t(wy,-) = (1,0,0),
t(wa,-) = (0,1,0), and #(ws,-) = ¥ On the one hand, the agent considers w to be
the only possibility at each state w. On the other hand, at state ws which occurs
with prior probability zero, her type at that state does not reflect her information
P(w3) = {ws}. For the model to be regular, one needs t(ws,-) = (0,0, 1).

Second, let u = (%, %, %), let P(-) =, and let t(w, ) = J,, for every w € Q, where
J,, is the Dirac measure concentrated at w (e.g., t(wi,-) = (1,0,0)). By construction,
the model satisfies Invariance and Entailment but violates Self-Evidence of Beliefs.
On the one hand, if the agent is informed of her own type mapping ¢, she would
be able to invert ¢ to distinguish each state w. On the other hand, her possibility
correspondence does not reflect this consideration. For the model to be regular, one
needs P(w) = {w} for each w € Q.

Third, let = (3,3, 3), and let P(w;) = P(ws) = {w1,ws} and P(w;) = {ws}. Let
t(wr, ) = t(ws, ") = (a,0,1 — @) with o # L and ¢(ws,-) = (0,1,0). By construction,
the model satisfies Entailment and Self-Evidence of Beliefs. According to the agent’s
possibility correspondence, she can distinguish {wy, w3} and {ws}. This is consistent
with the facts that her type is distinguishable between {wy, w3} and {ws} and that it is
indistinguishable between w; and ws. However, the model does not satisfy Invariance.
The likelihood ratio between pu({w;}) and u({ws}) is different from the one between
t(wr,-) and t(ws, ) (even though the agent cannot distinguish between w; and ws).
For the model to be regular, one needs a = % O

Second, while the standard partitional model of knowledge and belief (e.g., Au-
mann, 1976) makes the technical assumption that the partition { P(w)}weq is count-
able, this paper does not have to impose such an assumption. The following examples
illustrate that the framework of this paper can accommodate the “standard” Bayesian
situations in which an agent’s partition is uncountable[”"] While Example 2] is a gen-
eral example, Example [3| is a particular one.

Example 2. Let Q = R? and let ¥ be the Borel o-algebra Bre on 2. Let i be a
prior, which is a countably-additive probability measure, on (€2, ). Assume that p is
absolutely continuous with respect to the Lebesgue measure on (2, ). Thus, denote
by f the probability density function.

Let I = {1,2}. Let Pi(wi,ws) = {w1} X R and Py(w;,ws) = R x {wy} for each
w = (wi,ws) € Q. That is, at state w = (w1, ws), agent i is informed of the i-th
coordinate w;.

For each w = (wy,w2) € §, let ¢;(w,-) be the probability measure on (£2,%)
induced by the conditional distribution f(w_; | w;) in the following sense: for each

16This example is from Brandenburger and Dekel (1987).
170One can also generalize Example [1| to uncountable information sets.
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@ = (&1,@) € €,

/ flz |w)dx if &; > w;

ti(w, (—o0, @] X (—00,ds))

By construction, the model is regular. O
As a special case, I consider a bivariate normal distribution.

Example 3. Let (£2,X) be as in Example 2, Let p be the probability measure on
(Q,Y) associated with the bivariate normal distribution A <(8) , (; T)), where
p is the correlation coefficient. That is, for any (wy,ws) € €,

p((—o0, wi] X (—00,ws)) / / op(x,y)dydz,

where ¢, is the pdf:
1

1 2 2
Pp(,y) = mexp <—m (2 = 2pzy +y )) :

As in Example [ let I = {1,2}, and let Pi(w,ws) = {w1} x R and Py(wy,ws) =
R x {wy} for each w = (wy,wsq) € Q.

For each i € I and w = (wy,ws) € Q, since it is well-known that f(- | w;) follows
N (pwi, 1 — p?), agent i’s type t;(w,-) at w is given by the unique measure such that,
for each @ = (@1, @9) € Q,

- 2
1 /“’i 1 [ z— pw; ir iG>
. . _ exp | —= | — x if W > w;
ti(w, (=00, W] x(—00,@s]) = ¢ V2m\/1—p? J o 2\ /1_ 2 ,
0

if w; < Ww;
O

Two remarks are in order. First, one can modify Example [2| so that €) is a non-
empty subset of R2. Second, one can also consider the case with a bivariate normal
distribution in a different context. Suppose that a single agent is reasoning about the
unknown mean z of a normal distribution N(z,02). Assume that the variance o2 is
known. The agent observes the outcome of a certain experiment y = = + ¢, where €
is a noise following a normal distribution A(0,02). Let Q = R? and 3 = Bg2. The
prior p is given by the two normal distributions. At each state w = (y,z) € Q, the
agent’s possibility set is P(w) = {y} x R. Letting t(w,-) be the product measure

oytotus  olo?
o2+02 702+02

the epistemic model (2,3, u, P, t) is regular. Such “normal-normal updating” model
is a workhorse tool, for instance, in the literature on market microstructure and
rational-expectations equilibria. Section[5.2] in fact, extends the no-trade theorem in
the framework of this paper.

associated with the Dirac measure J, and a normal distribution N (
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3 Main Result

I present the main result that fully characterizes a regular model. A model is regular
iff (i) each type t(w, -) is derived, through Bayes updating, from the prior u conditional
on the information set P(w); and (ii) the information sets form a partition almost
surely in the sense that P(w) =, [t(w)] (i.e., u(P(w)Aft(w)]) = 0) for all w € €.
Recall Figure

Theorem 1. If a model 7 s regular, then (i) p(EN P(w)) = p(P(w))t(w, E) for all
(w, E) € Qx X, (i) P(-) C [t(-)], and (iii) for any fived w € Q, P(w) D, [t(w)]. The
converse holds when p(P(-)) > 0 so that t(-,-) = p(- | P(+)) is well-defined.

Remark 2. While Theorem [I] is interesting in itself, the main contribution of the
paper is that the theorem generalizes the standard partitional model of knowledge
and probabilistic beliefs in a way so that one does not have to impose the technical
assumption that the information partitions are countable. Section 4] indeed shows
that the framework of this paper is a generalization of the standard partitional model.
Section [o| shows that well-known results such as the agreement theorem, the no-trade
theorem, and the epistemic characterization of correlated equilibria all extend to the
setting of this paper.

As discussed in the Introduction, the literature has not been able to establish
even the agreement theorem, let alone the no-trade theorem, in a general (contin-
uum) state space. On the one hand, Green (2012, Propositions 14 and 15) provides
the mathematically-sophisticated formulations of the agreement theorem under topo-
logical and measure-theoretic assumptions on an underlying state space.[:g] On the
other hand, this paper shows that the agreement theorem (and also the other above-
mentioned theorems) extend to a general state space under the assumption that the
agent is able to reason about her own information sets (more precisely, recall Remark
. The application to the no-trade theorem is particularly interesting because, as
Green (2012) observes, the no-trade result of Milgrom and Stokey (1982)), which is
established under the assumption that the state space is finite, has been applied to a
setting in which a state space is a continuum in the literature of market microstruc-
ture and rational-expectations equilibria. As seen in Section [2.4] the framework of
this paper admits the case in which each agent receives a normally distributed signal
as in the literature of market microstructure and rational-expectations equilibria.

For epistemic characterizations of solution concepts, while this paper only studies
Aumann (1987)’s characterization of correlated equilibria, this paper suggests that
other solution concepts can also be generalized. For instance, epistemic characteriza-
tions of (mixed-strategy) Nash equilibria may call for a common prior (e.g., Aumann
and Brandenburger, 1995} Barelli, 2009). In cooperative games or exchange economies

18Generally speaking, a topological or measure-theoretic assumption on an underlying state space
in fact may constrain certain epistemic analyses. See Friedenberg and Keisler (2021) in the context
of iterated elimination of strictly dominated actions.
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with asymmetric information, for instance, Maus (2003) and Yannelis (1991) study
various notions of a core in a partitional model. In the robustness literature, pioneer-
ing papers such as Kajii and Morris (1997b) and Morris, Rob, and Shin (1995)) use
a model with at-most countable information sets. It would be interesting to extend
such results to an uncountable state space model.

Four technical remarks on Theorem [l| are in order. First, one can require each
t(w,-) only to be finitely additive in a regular model. The theorem does not hinge
on the countable additivity of each ¢(w, ). Indeed, each finitely-additive type ¢(w, )
becomes countably additive as it inherits countable additivity from the prior p by
Part (i).

Second, suppose that 1 and every t(w, -) are only finitely additive while keeping all
the other assumptions.ﬁ The first part still holds. That is, the consistency conditions
still imply that each type t(w,-) is the Bayes conditional probability p(- | P(w))
whenever it is well-defined and that the collection of information sets {P(w)},ecq
almost surely forms a partition (i.e., P(w) =, [t(w)] for all w € ). The second part
holds when {[t(-)]} forms a finite partition. Section and study the role of
additivity of the types t(w,-) and the prior u, respectively.

Third, for each w € €, while the events P(w) and [t(w)] are equal with each other
p-almost surely, they are conceptually different. One dictates qualitative belief while
the other quantitative belief@ In fact, since Part (iii) only requires P(w) 2, [t(w)]
for all w € Q, it follows that { P(w)}.eq may fail to be a partition. Consequently,
the qualitative belief operator K may violate Truth Axiom, Positive Introspection,
and Negative Introspection.@ The model, however, satisfies introspection of the form
BP(-) C KBP(-)and (—BP)(-) € K(=BP)(-). Section[4.2]examines a special case where
Q) is countable, ¥ = 29 and where u({-}) > 0. There, P(-) = [t(-)] forms a partition,
that is, the agent’s qualitative belief satisfies Truth Axiom, Positive Introspection,
and Negative Introspection. Moreover, qualitative belief and probability-one belief
coincide as K = B!. Section compares the qualitative belief and probability-one
belief operators in detail.

Fourth, I compare Parts (ii) and (iii). Both parts compare two sets P(w) and
[t(w)] at each given state w € Q. The possibility set P(w) consists of states that the
agent considers possible at w, while the set [t(w)] consists of states that the agent
cannot distinguish from w according to her type mapping t. Part (ii) states that
P(w) is at least as “informative” as [t(w)] in the sense that P(w) is at least as fine as
[t(w)] by set inclusion. In contrast, Part (iii) establishes the weak sense in which the
converse holds: [t(w)] is at least as fine as P(w) in the sense that [t(w)] is p-almost
surely included in P(w) (i.e., [t(w)] €, P(w), that is, p([t(w)] \ P(w)) = 0).

9Note that the integral of a bounded measurable mapping with respect to p is well-defined.
20Technically, in a regular model, one can show that P(w) = Neeswer(p £ and [tw)] =

n(E,p)eEx[O,l :wEBP(E) BP(E)'
21Example]@ in Appendix [B|is such an example.
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Here, it is important to compare two different sets P(w) and [t(w)] at each given
state w € 2 because they are pieces of information that the agent can process at each
realized state w. Indeed, in Part (iii), if one considers a different notion of p-almost-
sureness measuring the set of w such that P(w) 2 [t(w)] (i.e., {w € Q | P(w) 2
[t(w)]}), then it may be the case that the p-measure of such a set may not be equal
to 1, provided that such a set is measurable.@

Theorem (1| relates to the following previous results on the consistency conditions
between prior and posteriors where quantitative beliefs are sole primitives. First,
Mertens and Zamir (1985) ask when an agent’s posterior beliefs are derived from
her (or common) prior conditional on her information. Mertens and Zamir (1985,
Proposition 4.2) show that if a given quantitative belief model (€, 3, u,t) satisfies
Invariance and Certainty of Beliefs then the agent’s type t(w, E') turns out to be the
Bayes conditional probability u(F | [t(w)]) whenever it is well-defined ]

Second, Samet (1999) calls a quantitative belief model (€2, ¥, 11, t) to be Bayesian if
it satisfies Certainty of Beliefs and Invariance. Gaifman (1988) and Samet (1999) char-
acterize a Bayesian model by the consistency requirement that the prior conditioned
on some specification of the posterior beliefs must agree with the speciﬁcation.@

These results and Theorem [1| of this paper derive Bayes updating from epistemic
properties within a model. Theorem [l| states that, in an environment in which an
agent’s quantitative and qualitative beliefs are both present, the interaction between
prior and posteriors (i.e., Invariance) and the ones between posteriors and possibility
correspondence (i.e., Entailment and Self-Evidence of Beliefs) give rise to Bayes up-
dating within the model, provided each type is countably (indeed, finitely) additive.

A possibility correspondence is almost surely unique: if (Q, X, p, P, t) and (Q, %, u, P', t)
are regular models (where €2, 3, i, and t are common), then, for each w € Q, P(w) =,
P'(w). Yet, the resulting qualitative belief operators may not necessarily satisfy
K() =, K’(-)E Section shows that if P in a regular model forms a partition
then P is a unique one.

4 Special Cases

This section shows that the framework of this paper encompasses the standard models
in the literature. This section also demonstrates the uniqueness of an information
partition in the standard cases and studies introspective properties of qualitative
belief.

22Example |§| in Appendix [B|is such an example.

23In the similar way to the proof of Theorem |1}, the following can be established. For a given
model 6, let each t(w, ) be countably additive. Then, the model satisfies Invariance and Certainty
of Beliefs iff ¢(-,-) = u(- | [t(-)]) whenever the right-hand side is well-defined.

#Formally, a model is Bayesian iff u (E; | (i, BP*(Ey)) > p; for any (p;, E;)7 .

25Examples [5| and |§| in Appendix [B| provide such examples.
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4.1 Standard Countable-Partition Models

The framework of this paper generalizes a standard countable-partition model: (2, %, u, P, t)
where P is an (at-most) countable partition with pu(P(-)) > 0 and t(w, E) = %.
Such a countable model is, as in the e-mail game of Rubinstein (1989), important when
one distinguishes common knowledge and finite levels of mutual knowledge.

I demonstrate two general results. First, if u(P(-)) > 0 in a regular model then
the type mapping t is uniquely determined by the other two ingredients (p and P)
through Bayes conditional probabilities. Second, if p([t(-)]) > 0 then a partition P

coincides with the one [t(-)] generated by the type mapping ¢.

Corollary 1. Let (0, %, u, P,t) and (2,3, u, P, ') be reqular models (where Q, 3, p,
and P are common). Then, t(w,-) =t'(w,-) for any w € Q with p(P(w)) > 0.

Corollary [1| follows immediately from Theorem : t(w, F) = % =t (w, E)
for all &' € 3.

Next, observe that if a model (2, %, u, P,t) is regular then so is (Q, X, u, P, t)
with P'(-) = [t(-)]. While K(-) C K'(-), the qualitative belief operator K’ satisfies
Truth Axiom, Positive Introspection, and Negative Introspection.

[ show that if there is a partition { P(w)},ecq such that the model (2, %, i, P, t) is
regular and proper, then P(-) = [¢t(-)]. Roughly, if the analysts would like to introduce
an agent’s fully introspective knowledge (i.e., knowledge introduced by a partition) in
a quantitative belief model (€2, 3, u, t) with p([t(-)]) > 0, then the unique possibility
correspondence P(-) which makes the resulting model regular is [¢(-)].

Corollary 2. 1. Let @ be a model with w(P()) > 0. The following are equivalent.
(a) P() = [t()] and t(-,-) = p(- | P(-)).

(b) {P(w)}weq is a partition; Invariance; Entailment; Self-Evidence of Beliefs;
and each t(w,-) is a (countably) additive probability measure.

2. Let ﬁ be a model satisfying Invariance, Entailment, Self-Evidence of Beliefs,
and p(P(-)) > 0. Suppose further that each t(w,-) is a (countably) additive
probability measure. Then, {P(w)}oeq is a partition iff P(-) = [t(-)].

3. Let O be a model with (1) P(-) = [t(-)], (i) w(P(-)) > 0, and (iii) each t(w,
being a (countably) additive probability measure. The model satisfies t(-,-)
w(- | P(+)) iff it satisfies Entailment and Invariance.

Parts and of Corollary [2| follow from Part . Part establishes the
uniqueness of the possibility correspondence P compatible with the consistency con-
ditions. If the analysts introduce fully-introspective knowledge together with quan-
titative beliefs in a consistent way, the possibility correspondence P(-) = [t(-)] is
uniquely determined. Part (3] states that, under P(-) = [¢(+)], the “Bayes conditional
property” (i.e., t(-,-) = u(- | P(+))) characterizes Entailment and Invariance. Section
studies the probabilistic definition of qualitative belief.

)
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4.2 Discrete Regular Models: Partitional Properties of Qual-
itative Belief

_>
Call a model € discrete if 2 is countable, ¥ = 29 and if u({-}) > 0. Under this
“standard” setting, the following corollary demonstrates that qualitative belief nec-
essarily becomes knowledge and that probability-one belief and knowledge coincide.

—
Corollary 3. 1. A discrete model ) is reqular iff (1) P(-) = [t(-)] and (i) t(-,-) =
wu(- | P(+)). In this case, K = B! (satisfies Truth Aziom, Positive Introspection,
and Negative Introspection).

2. Let a model ﬁ satisfy the following: (i) {w} € ¥ for allw € Q; (ii) the model is
reqular; and (i) u(P(-)) > 0. Then, the model is discrete iff B' satisfies Truth
Aziom. In this case, K = B' (satisfies Truth Aziom, Positive Introspection,
and Negative Introspection).

Corollary 3| is related to Bonanno and Nehring (1998 1999): they show that, in a
finite state space, the existence of a common prior (assigning positive probability to
each state) implies Truth Axiom of probability-one belief.

In a regular discrete model, the possibility correspondence P(-) exactly coincides
with [¢(+)], and knowledge and probability-one belief coincide with each other, irre-
spective of assumptions on information sets. Since P(-) = [t(-)] forms a partition
on the state space, K = B! satisfies Truth Axiom, Positive Introspection, Nega-
tive Introspection, (Countable) Conjunction, Monotonicity, and Necessitation. The
operator K inherits Positive Introspection and Negative Introspection from B!. In
contrast, B! inherits the following form of strong conjunction property from K. For
any collection of events £ € 2* with (€ € &, pee B (F) € BN 5)@

Moreover, Corollary |3| implies that possibility coincides with assigning positive
probability in the sense that P(w) = {w' € Q | t(w,{w'}) > 0} for all w € QF
Section studies the probabilistic definition of qualitative belief.

Corollary [3| suggests that a care must be taken of the agent’s qualitative belief
if the analysts study an epistemic characterization of a solution concept for a game.
Suppose that the analysts introduce qualitative belief instead of knowledge when they
study, for example, implications of common belief in rationality instead of common

26To see that this conjunction property is strong, consider the following example in which the
state space is uncountable (that is, the model is not discrete). Namely, take (€2, %) = ([0, 1], Bjo,1}),
where Bjg 1) is the Borel o-algebra on [0,1]. Take w € Q. Let E, = Q\ {w'} for each o’ € Q\ {w}.
Suppose that, for each w’ # w, the agent 1-believes E, at w. By this conjunction property, it follows
that the agent 1-believes {w} = [, con (o} Fur at w. Thus, the agent would be omniscient in the
sense that B1(E) = F for all E € %.

2THalpern (1991) studies certainty (probability-one belief) by defining the “support relation” be-
tween two states by t(w,{w'}) > 0. Samet (1998)) studies the (Markov transition) matrix generated
by (t(w,{w'}))wwen. Morris (1996) derives qualitative belief from preferences, and under certain
condition, the notion of possibility reduces to assigning positive probability.
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knowledge of rationality@ Corollary |3| points to the importance of figuring out the
relations among prior, posteriors, and information sets in a discrete model because
qualitative belief reduces to (fully introspective) knowledge despite the analysts’ pur-
pose.

Next, a violation of fully introspective knowledge may also come from lack of
introspection. Thus, suppose that the analysts would like to study knowledge of an
agent who violates Negative Introspection: the agent does not know some event E
at some state, and she does not know that she does not know £ at that state.@ In
other words, consider unawareness of the agent in a state space model with knowledge
and quantitative beliefs. In a discrete regular model, since K has to satisfy Negative
Introspection, there is no state at which the agent is unaware of any event F (i.e.,
she does not know E and she does not know that she does not know F). I formulate
it as an immediate corollary.

%
Corollary 4. In a discrete reqular model 0, the agent is unaware of nothing: (=K)(-)N

(~K)2() = 0.

I discuss two points that the corollary makes on unawareness in standard state
space models. First, the previous negative results on the possibility of describing
a richer form of unawareness (e.g., Dekel, Lipman, and Rustichini, 1998; Modica
and Rustichini, 1994) impose some direct links between knowledge and unawareness.
Corollary [4] suggests that, once an agent possesses her quantitative belief, there is
a new channel through which the agent can have fully introspective knowledge and
thus she is fully aware of everything. Thus, the corollary sheds a new light on an
additional limitation of a single-state-space model to represent a non-trivial form of
unawareness.

Second, when it comes to representing non-introspective knowledge in a proba-
bilistic environment, additivity of posteriors and the invariance condition would be
strong so that knowledge eventually becomes fully introspective. To see this point,
suppose P(-) # [t(-)] due to the failure of Negative Introspection (of K) in a dis-
crete model as above. I consider non-partitional models in broader contexts, as the
same conclusion as above can already be drawn with respect to solution concepts of
games and the implications of common knowledge such as the agreement theorem
(Aumann, |1976) in non-partitional models. Now, the model has to violate either
Invariance, Entailment, Self-Evidence of Beliefs, or the assumption that each type
t(w,-) is additive.

Since the information sets represent the agent’s knowledge, assume Entailment:
if she knows an event then she 1-believes the event. Also, assume Self-Evidence of
Beliefs. Just as the agent’s knowledge is positively introspective, if she p-believes an

28See, for instance, Bonanno (2008)), Bonanno and Tsakas (2018), Fukuda (2024}, Guarino and
Ziegler (2022)), Hillas and Samet (2020), Samet (2013), and Stalnaker (1994)).

29Gee, for instance, Chen, Ely, and Luo (2012) and Fukuda (2021)) for the possibility of representing
unawareness on a standard state space.
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event F then she knows that she p-believes E. Thus, if each type t(w,-) is additive,
then Corollary |3 implies that the model has to violate Invariance. Likewise, under
Invariance, some type t(w, -) may be non-additive.

Consider a discrete model {3 = (Q, 2, u, P t) with P(-) # [t(-)] and t(-, P(-)) =1
(i.e., Entailment). The type at each state w coincides with the Bayes conditional

probability t(w, E) = % for all (w, E) iff the likelihood ratio between types
coincides with the likelihood ratio between prior probabilities given an information
set: igzg = Zgﬁgigzgg for all (w, £, F) with u(F N P(w)) > 0 and t(w, F') > 0. If this
is the case, then each type t(w,-) is additive. If the model satisfies Self-Evidence of
Beliefs, then it has to violate Invariance.

This observation sheds light on the comparison between ex-ante and ex-post anal-
yses or the value of information in non-partitional knowledge models as discussed by,
for example, Dekel and Gul (1997) and Geanakoplos (2021)). This observation pro-
vides an intuition behind why “dynamic inconsistency” occurs in a non-partitional
(i.e., reflexive and transitive) environment.m This observation also sheds light on
quantitative belief updating in a non-partitional environment. In the literature study-
ing non-partitional information sets, it has been assumed that an agent updates her
probabilistic assessment according to the Bayes rule given a non-partitional informa-
tion set as in the previous argument. As Dekel and Gul (1997, p.147) put it, however,
“there are essentially no results that justify stapling traditional frameworks together

with non-partitions.”P]]

5 Applications

On the one hand, the standard partitional model of knowledge and probabilistic
beliefs can be used to study epistemic characterizations of solution concepts such
as Nash and correlated equilibria, agreement and no-trade theorems, and various
notions of rational-expectations equilibria. On the other hand, the model has a
technical assumption that each agent’s partition is at most countable. The technical
contribution of this paper is to provide an extension of the standard partitional model
to an uncountable state space with uncountable information sets that conforms to
the assumptions summarized in Remark [II The results obtained in the standard
framework can be immediately generalized to the framework of this paper.

Among others, this section examines the following applications. Section stud-
ies the notions of common belief and extends the agreement theorem of Aumann
(1976), Monderer and Samet (1989), and Neeman (1996al). Section generalizes

30Gaifman (1988) also discusses the violation of a Bayesian belief model (2,3, u,t) in terms of
“dynamic inconsistency” between ex-ante and ex-post analyses.

31The probabilistic approach to unawareness by Heifetz, Meier, and Schipper (2013)) considers an
extended structure consisting of multiple sub-state-spaces. While an agent’s beliefs satisfy Invariance
within each sub-space, she exhibits unawareness in the entire enriched model.
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the no-trade theorem of Milgrom and Stokey (1982) and Sonsino (1995). Section
generalizes Aumann (1974)’s epistemic characterization of correlated equilibria.
Unless otherwise stated, let I be a non-empty countable set of agents. Recall
that an interactive epistemic model is ((Q, %, u), (P;, t;)ier) such that (Q, %, u, P, t;)
is a model for each agent i € I. Denote by BY and K, agent i’s p-belief operator
and qualitative belief operator, respectively. Call the interactive epistemic model
(2,3, 1), (P, ty)ier) regular if (0, %, u, Py, t;) is regular for each i € I. Likewise, call
the interactive epistemic model discrete if 2 is countable, ¥ = 2 and if u({-}) > 0.

5.1 Common Qualitative and Quantitative Beliefs and Agree-
ment Theorems

For a regular model, define the (iterative) common p-belief operator CP : ¥ — ¥
as CP(-) == N,en(B7)"(+), where Bj(-) := (,c; BY () is the mutual p-belief operator.
While BY(E) is the event that every agent p-believes E, the event CP(E) is the set of
states at which the agents commonly p-believe F| i.e., the agents p-believe E, they
all p-believe that they all p-believe E, and so on ad infinitum.

Likewise, define the (iterative) common qualitative belief operator C : ¥ — %
by C(-) := Nyeny K7 (), where K;() := [,¢; Ki(+) is the mutual qualitative belief
operator. Since K;(-) C B}(-), it can be seen that C(-) C C!(-). Also, it is well-
known that C?(-) C BYCP(-) and C(-) C K;C().

An immediate consequence of Corollary |3|is that, in any discrete interactive epis-
temic model, common qualitative belief reduces to common knowledge without as-
suming, a priori, any assumption on agents’ qualitative beliefs.

Corollary 5. Let (2,3, 1), (P, t;)icr) be a discrete regular interactive epistemic
model. Then, common qualitative belief and common 1-belief coincide: C = C!.
Moreover, C = C! satisfies Truth Axiom, Positive Introspection, and Negative Intro-
spection. That is, common qualitative belief reduces to common knowledge.

Next, in a regular model, the agents have correct mutual belief in what is com-
monly p-believed. The proposition below states that, whenever the agents mutually
believe (either qualitatively or with probability 1) that they have common p-belief in
an event, they have common p-belief in the event.

Proposition 1. In a reqular interactive epistemic model,
K;CP(-) € B;CP(-) C CP(-).

Next, I establish the following agreement theorem(s) (Aumann, 1976; Monderer
and Samet, 1989; Neeman, |1996a) for a regular interactive epistemic model. The
result holds as long as there exists some prior u such that ((Q, %, u), (P, t;)ier) is
regular.
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Proposition 2. Let ((Q,%, i), (P, ti)icr) be reqular. Let X; := {w € Q| t;(w, E) =
ri} for eachi € I, and let X = (,.; X;. If u(CP(X)) >0, then |r; —r;| <1 —p for
alli,5 € 1. Especially, if n(C(X)) > 0, then r; =1, for alli,j € I.

If the regular model (€2, 2, ), (P;, t;)icr) satisfies pu(P;(+)) > 0 for some ¢ € I, then
the following stronger agreement theorem holds: C?(X) # 0 implies |r; —r;| <1—p
for all 4, j € I. Especially, if C(X) # 0, then r; = r; for all i, j € I.ﬁ

5.2 No-Trade Theorem

[ extend Sonsino (1995)’s no-trade theorem to the framework of this paper, where
a state space can be an arbitrary measurable space and each agent’s information
sets can be uncountable as long as the model satisfies the assumptions summarized in
Remark ﬁ As claimed by Green (2012), the literature in market microstructure and
rational-expectations equilibria sometimes invokes the no-trade theorem by Milgrom
and Stokey (1982)) (which is established on a finite state space) to a setting in which
the underlying state space is a continuum.

In this subsection, let I be a non-empty finite set of agents. Let L be a non-empty
finite set of commodities. Agent ¢’s utility function wu; : 2 x ]R‘fl — R is measurable.
Agent i’s (state-contingent) initial endowment e; : @ — R‘f‘ is a measurable function
which satisfies Pi(w) C {w' € Q | ¢;(') = ei(w)} for each w € Q. The assumption
intends to capture that each agent qualitatively believes, at each state, her own
endowment. Denote e := (¢;);c;. A state-contingent consumption bundle of agent i
is a measurable function z; : Q — ]R'f'. An allocation = := (z;)es is feasible (with
respect to the initial endowment e) if 3., zi(-) < > .o ei(c).

Agent i’s ex-ante expected utility from x; is

i) = [ o)),

provided that the right-hand side is well-defined. Agent i’s ex-post expected utility
at w from z; is

oi(s | w) = /Q i@, (@)t (w, d),

provided that the right-hand side is well-defined.
The initial allocation e is ez-ante Pareto-optimal if there is no other feasible
allocation = satisfying (i) v;(z;) > wi(e;) for all ¢ € I; and (ii) v;(x;) > v;(e;)

32Without pu(P;(+)) > 0 for some i € I, the statement requires p(C(X)) > 0 even if Q) is finite. See
Example [ in Appendix [B]

33The no-trade theorem of Sonsino (1995) extends the common knowledge assumption to common
p-belief, where each agent’s information sets are at most countable. See also Neeman (1996b)) for
another extension. Koutsougeras and Yannelis (2017) also study a no-trade theorem on a general
measurable space, keeping the original common knowledge assumption of Milgrom and Stokey (1982)).
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for some j € I. Agent i weakly e-prefers x; to e; at w (written z; =5, e;) if
vi(x; | w) > vi(e; | w) + . Likewise, agent i strictly e-prefers x; to e; at w (written
v =5, €) if vi(z; | w) > vi(e; | w) +¢e. The agents e-prefer x to e at w (written
x = e) if (i) ;=5 e; for all i € I and (ii) z; =5, e; for some j € I.

With these in mind, the no-trade theorem below states that if the agents start
with an ex-ante Pareto-optimal allocation e and if x is a feasible allocation, then the
event that it is common p-belief that the agents e-prefer x to e has p-measure zero,
provided that p is close enough to 1.

Proposition 3. Let e and x be an ex-ante Pareto-optimal allocation and a feasible
allocation, respectively, such that M := maxX;er Sup,,eq(ui(w, T:(w)) — ui(w, €;(w))) <
oo. Let (p,e) € (0,1] x (0,400) be such that e > (1 —p)M. Then,

p(C({w e Qx> e}t)) =0

5.3 Correlated Equilibria

This subsection generalizes Aumann (1987))’s epistemic characterization of correlated
equilibria to any regular model. To that end, let ((A;)icr, (u;)icr) be a strategic game:
A; is agent i’s action space endowed with a c-algebra A; with {a;} € A; for every
a; € A;; and u; 0 A — R with A = Xiel A; is agent i’s measurable payoff function
with respect to the product o-algebra A on A. To ensure that agents’ payoffs are
well-defined, assume sup(, ;e ax [ui(a)| < oco.

A correlated equilibrium o* = (07 );e; over a regular (interactive epistemic) model
(2,5, 1), (Pi,t;)ier) is a profile of (measurable) strategies of : Q — A; satisfying, for
each i € I, (i) belief-in-strategy: P(w) C [of(w)] :={w' € Q | 0f(w) = 0f(w)} € &
for every w € Q; and (ii) (ex-ante) optimality:

[ wler) ot nuds) = [ wienw).o” w)u(d)
for any (measurable) strategy o; :  — A; satisfying P(w) C [0;(w)] € X for each
w € . The belief-in-strategy condition means that agent ¢ qualitatively believes that
she takes an action o} (w) € A; at w.
Since the model is regular, the ex-ante optimality condition is equivalent to the
ex-post one. That is, for each ¢ € I, the optimality condition reduces to: for each
a; € A; and w € Q,

u; (o7 (@), 0, (W)t (w, dw) > ui(a;, 0, (W)t (w, dw).
/pi@(“ @i, d5) 2 [ ulas, 0" (@)l do)

P;(w)

With this in mind, the agents commonly believe their Bayes rationality in a
regular (interactive epistemic) model (2, %, ), (P, t;);cr) under a strategy profile

0* = (0])ier if 0* is a profile of (measurable) strategies o :  — A; satisfying (i)
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belief-in-strategy: P(w) C [0} (w)] :={w' € Q] o} (') = 0} (w)} € X for every w € ;

)

and (ii) Bayes rationality: for all i € I, a; € A;, and w € €,

/ ui(o7 (@), 02 (@)ti(w, dw) = / ui(ai, 02 (@))ti(w, dw).

Q Q

Then, ¢* is a correlated equilibrium over ((€2, 3, i), (P;,t;)icr). This generalizes Au-
mann (1987)’s epistemic characterization of correlated equilibria to any regular model.

6 Theoretical Implications

This section studies theoretical implications of Theorem [} Especially, the section
studies the differences between qualitative and probability-one beliefs. It is theoreti-
cally important to understand the differences between qualitative and probability-one
beliefs. Section studies almost-sure Truth Axiom of qualitative and probability-
one beliefs. Section studies the notion of qualitative belief from the standpoint of
quantitative beliefs.

6.1 Almost-Sure Truth Axiom of Probability-One and Qual-
itative Beliefs

Truth Axiom is a strong axiom in that if one agent (say, Alice) knows that another
agent (say, Bob) is rational then it must be the case that Bob is indeed rational. In the
literature on epistemic characterizations of solution concepts of games where agents
possess qualitative beliefs, papers such as Bonanno (2008)), Bonanno and Tsakas
(2018), Fukuda (2020, 2024), Guarino and Ziegler (2022), Hillas and Samet (2020)),
and Samet (2013) study the differences in predictions between common belief in
rationality and common knowledge of rationality. Bonanno and Nehring (1998)) study
the role of Truth Axiom on the agreement theorem and the absence of unbounded
gains from betting.

I show below that the probability-one belief and qualitative belief operators satisfy
Truth Axiom g-almost surely: BY(E) C, E and K(FE) C,, E for all E € . In a regu-
lar interactive epistemic model, this implies that the common 1-belief and qualitative
common belief operators also satisfy Truth Axiom p-almost surely: C!'(E) C,, E and
C(E)C, Eforal E € X.

Corollary 6. 1. In any reqular model, B satisfies Truth Aziom p-almost surely:
w(BYE)\ E) =0 for all E € 3. Consequently, K also satisfies Truth Aziom
p-almost surely.

2. In any regular interactive epistemic model, the common qualitative belief op-
erator C and the common 1-belief operator Ct satisfy Truth Aziom p-almost
surely.
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To obtain almost-sure Truth Axiom of B, it is enough for a given model to satisfy
Invariance, Certainty of Beliefs, and the property that each ¢(w, -) is monotone. Thus,
this part of Corollary [6] also holds in a quantitative belief model (2,3, . t).

Brandenburger and Dekel (1987, Property P.4.) obtain a closely-related result. In
their model, an agent’s type mapping is introduced as a posterior conditional on a
sub-c-algebra that dictates her information. Then, the probability-one belief operator
satisfies Truth Axiom ¢(w, -)-almost surely for all w € Q (p-almost surely as well).
Also, Halpern (1991, Proposition 4.3) establishes that B! satisfies Truth Axiom -
almost surely when the type mapping does not depend on states (i.e., t(w, ) = t(«', *)
for all w,w" € Q).

Repeating almost-sure Truth Axiom for agents, for any sequence of agents (z'j)?zl
in I, the operator B;, o---o B;, satisfies Truth Axiom p-almost surely (for an event
E, (B;, o---0B;)(F) is the event that agent i; believes ... the agent i, believes E).
Indeed, letting E; := (B, o --- 0 B;,)(E) for each j € {1,...,n} and Ey := E,

p((Bi, 00 By )(E) \ E) = p(En \ Ey) < ZM(EJ‘ \ Ej1) =0.

6.2 A Probabilistic Definition of Qualitative Belief

I examine the differences between qualitative and quantitative beliefs. First, as is
known in the literature (e.g., Monderer and Samet, [1989; Vassilakis and Zamir, |1993)),
it is not necessarily the case that B'(-) =, K ()]

Second, on a related point, while the probability-one belief operator satisfies Pos-
itive Introspection and Negative Introspection (B'(-) € B'B!(-) and (=B')(:) C
B'(=B")(+)) by Certainty of Beliefs, it is not necessarily the case in a regular model
that the qualitative belief operator K satisfies both introspective properties p-almost
surely (i.e., K(-) C, KK(-) and (=K)(-) C, K(=K)(-) may fail) [

Below, I first show that qualitative and probability-one beliefs may differ in an
uncountable model. Then, I move on to a sufficient condition under which the pos-
sibility correspondence that determines the agent’s qualitative belief can be defined
from the type mapping that determines her quantitative beliefs.

6.2.1 Do Qualitative and Probability-One Belief Coincide?

I show that qualitative and probability-one beliefs coincide iff possibility implies
putting positive probability, i.e., if an agent considers a state w’ possible at w, then
she assigns positive probability to {«w'} at w. This result may be incompatible with
an uncountable state space because it restricts the support of the type at w to be at
most countable.

34Indeed, in a regular model, let w € € satisfy the following properties: (i) w’ € P(w) implies
P(w) C P(w"); (ii) p(P(w)) > 0; and (iii) w € BY(E)\K(E). Then, 0 < u(P(w)) < u(BY(E)\K(E)).
35Example @ in Appendix [B|is such an example.
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Proposition 4. For all w € Q, assume that {w} € 3 and that t(w,-) is monotone.
Then, each of and (@ implies @ Assuming Entailment, all are equivalent.

1. P(w) C{w' € Q| t(w,{w'}) > 0}.
2. (~K)(~E) C Ure(o,l}mQ B"(E).
3. B(-) C K(-) (consequently, K = B').

In Proposition , Condition means that if the agent considers w’ possible at w,
then her type at w assigns positive probability to w’. Condition states that if the
agent considers an event F possible (in the sense that she does not qualitatively believe
its negation —F) then she believes E with positive probability. Under Entailment,
each condition is equivalent to K = B!,

Two remarks are in order. First, the converse of Condition (£2)), (-K)(—E) D
UTGQ\ 0 B"(E), states that if the agent believes an event E with positive probability,
then she considers E possible (in the sense that she does not believe its negation = F).
This property obtains in any regular model.ﬂ

Second, Proposition [4| states that, generally, P(w) may not be the support of ¢(w)
(in the sense of the smallest closed set F' satisfying t(w, F') = 1). For example, let each
t(w, ) be the Lebesgue measure on €2 = [0, 1]. The support is R. If possibility reduces
to putting positive probability, then Condition implies that the agent assigns pos-
itive probability to any non-empty set, which is impossible. Similarly, probability-one
and qualitative beliefs may not coincide if the underlying state space €2 is uncount-
able. Condition implies that each P(w) is at most countable. Hence, Proposition
implies the importance of introducing a possibility correspondence separately from
a type mapping when an underlying state space is uncountable.

6.2.2 Possibility Correspondence and Support of Types

Next, in a purely-probabilistic setting, I provide a technical measurability condition
under which one can introduce a possibility correspondence (qualitative belief) from
the support of each type, as previous studies have introduced qualitative belief in a
probabilistic framework.E]

To define the notion of the support of a type (which is a probability measure), let
(Q2,0) be a Polish space (i.e., a complete and separable metric space with O being
the collection of open sets), let ¥ := Bq(O) be the Borel o-algebra, and let 1 be a
prior on (€2,Y). As is standard, introduce a topology Oa on A(2) by the sub-basis
{{p € AQ) | W(E) > p} | (E,p) € O x[0,1]}. Note that since € is Polish, this
topology coincides with the weak-% topology. Slightly abusing the notation, consider

36This is because the model satisfies ¢(-, (P(+))¢) = 0 under Entailment and the additivity of each
t(w,-).

37See, for instance, Battigalli and Bonanno (1999), Bonanno and Nehring (1999), Halpern (1991)),
Tan and Werlang (1988), and Vassilakis and Zamir (1993).
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a continuous type mapping t : (2, 0) — (A(Q2), Oa) (i.e., each t(w,-) is a countably-
additive probability measure on 2).

Now, each t(w, -) has its support suppt(w) = (J{E € O | t(w, E) =0})“ € ¥. If
supp t(-) satisfies the measurability condition that {w € Q | suppt(w) C E} € 3 for
each E € X, then one can add the possibility correspondence suppt(+) into a purely
probabilistic model (2, ¥, u, t)ﬁ

By definition, ¢(-,supp ¢(-)) = 1. Since each {u} is closed, so is [¢t(-)] = 7 ({t(*)}).
Thus, suppt(-) C [t(-)] iff £(-, [t(-)]) = 1. The former condition states that the agent
qualitatively believes her probabilistic beliefs (Certainty of Beliefs) when (-, [t(:)]) =
1, provided that the qualitative belief (i.e., a possibility correspondence) is defined by
the support of the type t(w). Hence, if (Q, 3, u, t) satisfies Invariance and (-, [t(-)]) =
1, then the model ((Q, ¥, u), ¢, suppt(+)) is regular[]

In a (regular) model in which Self-Evidence of Beliefs holds, if w’ € supp t(w) then
t(w, ) = t(w',-) and thus suppt(w) = suppt(w’). Hence, the possibility correspon-
dence suppt(-) is transitive and Euclidean "]

7 Discussions

This section provides further discussions on Theorem [I} Section [7.1] studies the role
of additivity of types. Section [7.2] studies the role of additivity of the prior. Section
shows that one can take agents’ expectations instead of quantitative beliefs as
a primitive. Section studies conditional probability systems (CPS). Section
introduces regular conditional probabilities instead of types as a primitive. Section
provides concluding remarks. Throughout this section, unless otherwise stated, I
focus on a single-agent epistemic model.

7.1 The Role of Additivity of Types

This subsection studies the role of additivity of types. I decompose the set [t(w)]
into two parts and impose the following stronger measurability conditions on a type
mapping ¢: (1) (1 t(w)) :={w" € Q| t(w,-) < t(w',-)} € ¥ and (ii) (J t(w)) :={w' €

38GSection has shown that this measurability condition may be a strong sufficient condition
in some contexts.

39In particular, if Q is countable and ¥ = 2%, then one can introduce an agent’s possibility
correspondence by the support of ¢. However, note that it may not necessarily be the case that
suppt(-) = [¢(-)]. For example, let Q@ = {w1,wa,ws}, o = (%, %,0), and t(w,-) = p for each w € Q.
Then, suppt(-) = {wy, w2} < [t(-)].

40Three remarks are in order. First, reflexivity may fail. As a simple example, let (Q,%) =
({w1,ws2},2%), and let p = t(w,-) = (1,0) for each w € Q. Second, as in Section if Q is
countable, ¥ = 22 and u({-}) > 0, then supp (-) forms a partition. Third, without Self-Evidence of
Beliefs, supp ¢(-) may not necessarily be transitive or Euclidean. Let (€2, %) = ({w1, w2, w3}, 29), and
let p= (3,3, %), Let t(wr,-) = (0,4,1), t(wz,) = (5,0, %), and t(ws,-) = (3, 1,0). Then, suppt(-)
is not reflexive, transitive, or Euclidean.
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Q) <tlw, )} eXforallwe Q. If © € (T t(w)), then t(w, F) is at least as
high as t(w, F) for any E € ¥. By definition, [t(-)] = (T t(:)) N ({ t(-)).

Here I assume the measurability of (1 ¢(-)) and ({ ¢(+)) in order to see two different
ways in which the agent can be certain of her probabilistic beliefs. By letting [0, 1]g :=
[0,1] N Q, observe

(T tw)) = N {w € Q|tw, E)>p}and (1)

(p,E)€[0,1]gxX:t(w,E)>p

(} tw)) = N {W et E) <p}. (2)

(p,E)€[0,1]gxE:t(w,E)<p

In the right-hand side of each expression, p can also range over [0, 1] instead of [0, 1]q.
Also, ¥ can be replaced with a countable algebra ¥ that generates ¥ if each #(w, )
is continuous with respect to both increasing and decreasing sequences of events and
is monotone. Then, (1 ¢(-)) and (] #(-)) are measurable without assumption.

When the agent reasons about (1 #(-)), she only uses her positive belief of the
form, “I believe an event with probability at least p.” That is, when she does not
believe an event E with probability at least p, she does not take this information into
account in inferring the true state of the world. In contrast, when the agent reasons
about ({ ¢(+)), she only uses her negative belief of the form, “I do not believe an event
with probability more than p.”

The distinction between (1 ¢(-)) and [t(-)] (and between (] ¢(-)) and [¢(-)]) matters
when the agent’s belief is non-additive. That is, if each t(w,-) is additive, then
(T t(:)) = (L t(-)) = [t()][7] Note that, in this case, Part (i) of the measurability
condition is implied by Part (i).

In fact, the distinction between (1 ¢(+)) and [t(-)] is related to Ghirardato (2001)
and Mukerji (1997)) in the decision theory literature, which characterize non-additivity
from the agent’s “perception” (see also Bonanno, 2002; Lipman, 1995). To see this
point, interpret ¢ as a mapping from €2 into the collection of set functions (with some
given properties). On the one hand, [t(w)] can be considered to be t 7} ({t(w)}) := {& €
Q] t@)(:) = t(w)(-)}. Thus, at state w, the agent is assumed to be able to observe
a singleton {t(w)} so that she is able to infer that the true state is in ¢! ({t(w)}).
On the other hand, (1 t(w)) can be regarded as t~'({u | p(-) > t(w)(-)}) = {w €
Q| t@)(-) > t(w)(-)}. At state w, the agent is assumed to be able to observe a
(generally) non-singleton set {u | u(-) > t(w)(-)}. In Ghirardato (2001) and Mukerji
(1997), the agent has a limited observation on a non-empty set of consequences or
signals (instead of own beliefs here) so that her beliefs may be non-additive. If, in
contrast, she has a perfect observation on a singleton set of a consequence or a signal,
then her beliefs are finitely additive.

Full introspection associated with Certainty of Beliefs comes from the fact that,
at each state w, the agent always puts probability one to the set of states that

A Suppose t(w, ) < tw',-). If t(w, E) < t(w', E) for some E € X, then 1 = t(w, E) + t(w, E°) <
t(w',E) 4+ t(w', E°) = 1, a contradiction.

30



are indistinguishable from w. I now disentangle the negative introspective property
((=BP)(-) € BY(=BP)(+)) and Certainty of Beliefs.

A model (3 satisfies Certainty of Positive (p-)Beliefs if t(-, (1 t(-))) = 1. At each
state w, the agent puts probability one to the set of states @ with t(w, ) < t(®,-). If
the model satisfies Certainty of Positive Beliefs and if each t(w, -) is monotone, then
BP(-) € B'BP(-). Indeed, I show the sense in which Certainty of Positive Beliefs
captures the positive introspective property BP(-) C B!BP(.).

%
Proposition 5. Let a model ) satisfy the following: (i) 3 is generated by a countable
algebra Xy; (ii) each t(w,-) is monotone; and (iii) for each w € €2, if t(w, E,) =1 for
all n € N then t(w,N,en £n) = 1. Then:

1. The model satisfies Certainty of Positive Beliefs iff BP(-) C B'BP(-).

2. Suppose further that t(-,Q) = 1. Then, t(-,(} t(-))) = 1 iff (=BP)(-) C
B(=Bo)()

Proposition [5| provides the sense in which Certainty of Positive Beliefs character-
izes the positive introspective property BF(-) C B'BP(-), while (standard) Certainty
of Beliefs implies both B?P(-) C B*B?(-) and (=B?)(-) C B'(—=B?)(-).

Proposition 5| clarifies the role of additivity in introspection of quantitative beliefs.
If each t(w, ) is additive then Certainty of Beliefs and Certainty of Positive Beliefs
coincide as (1 ¢(-)) = [¢(:)]. Thus, under the setting of Proposition [f] if each t(w, )
is additive, then the positive introspective property (BP(-) € B'BP(-)) implies the
negative introspective property ((—=BP)(-) € B'(—=B?)(-))[¥

If ¥ is finite (note that an infinite o-algebra 3 is necessarily uncountable), then
Condition (iii) of Proposition [5| can be replaced as follows: t(w, E) = t(w, F) = 1
implies t(w, E N F) = 1. This condition is met, for instance, when a monotone type
t(w, -) satisfies t(w, F) + t(w, F) < t(w, EN F) 4+ t(w, E U F), the property known as
convexity (of a set function).

Next, €1 satisfies Self-Evidence of Positive (p-)Beliefs if o' € P(w) implies t(w, -) <
t(w',-), i.e., P(w) C (T t(w)). It says: if the agent considers w’ possible at w, then,
as long as she assigns probability at least p to an event E at w, she also assigns
probability at least p to E at w’. Again, Entailment and Self-Evidence of Positive
Beliefs imply Certainty of Positive Beliefs, provided that each ¢(w, -) is monotone. If
each t(w, -) is additive, then Self-Evidence of Positive Beliefs reduces to Self-Evidence
of Beliefs: P(w) C [t(w)] (i.e., if W' € P(w) then t(w,-) = t(w',+)). If the possibil-
ity correspondence P is symmetric (i.e., w’ € P(w) implies w € P(w') or equivalently
E C K(—K)(—F) for all E € ¥), then Self-Evidence of Positive Beliefs also reduces to
Self-Evidence of Beliefs. I formulate Self-Evidence of Positive Beliefs so as to examine
the effect of additivity of types. The following proposition shows that Self-Evidence
of Positive Beliefs captures positive introspection.

42This remark applies to the aforementioned setting where 3 is generated by a countable algebra
and where each t(w, ) is a countably-additive probability measure.
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Proposition 6. 1. The model satisfies Self-Evidence of Positive Beliefs iff BP(-) C
K(BP)(:).

2. The model satisfies Self-Evidence of Negative Beliefs, i.e., P(-) C (] t(-)), iff
(=B")(-) € K(=B")(")-

Proposition [0] states that Self-Evidence of Beliefs means: whenever the agent p-
believes an event F, she qualitatively believes that she p-believes E. Proposition [f
implies that P(-) C [t(-)] iff BP(-) C K(BP)(:) and (=BP)(-) € K(—=BP)(:). Propo-
sition [6] again disentangles the role of additivity of types by considering (1 ¢(+)) and

(L 2().

7.2 Non-Additive Prior

This subsection briefly studies the case in which the prior x4 is not necessarily additive.
A set function v : ¥ — [0, 1] is a capacity if v(0) =0, v(Q) = 1, and v(F) < v(F) for
any B, F € ¥ with E C F. This section considers an epistemic model (Q, %, u, P, t)
in which p and each t(w,-) are a capacity. Below, I present an analogous result to
Theorem (1] in this context.

Proposition 7. Suppose the following: Invariance, P(-) C [t(-)], and t(w, E) =
t(w, EN P(w)) for all (w, E) € Q x X. Then,

t(w, E)u(P(w)) = p(E N P(w)) for all (w, F) € Q x 3.

In the proposition, the assumption ¢(w, F) = t(w, ENP(w)) for all (w, F) € Q@ x %
is indeed equivalent to Entailment if each ¢(w, -) is additive. The proposition shows the
robust sense in which Invariance, Entailment, and Self-Evidence of Beliefs characterize
Bayesian updating.

7.3 Consistency among Prior, Expectations, and Informa-
tion Sets

The paper has studied the consistency conditions among prior, posteriors, and infor-
mation sets. In a regular model, each type ¢(w,-) turns out to be the (countably-
additive) Bayes conditional probability u(- | P(w)). Each type induces conditional
expectations E,[f | w] := [, f(@)t(w,d@) of bounded measurable functions f. Thus,
the analysts can study agents’ higher-order expectations in the regular modelfﬂ More-
over, Invariance can be seen as the Law of Iterated Expectations (of indicator func-
tions):

Bulle] = u(E) = [ to, Bulde) = BEills | o],

43Gee, for example, Golub and Morris (2017), Nehring (2001), Samet (1998, [2000), and Weinstein
and Yildiz (2007) for interactive expectations. Fukuda (2024) constructs a canonical expectation
space.
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where [y is the indicator of E € 3. Since p and each t(w,-) are countably additive,
Invariance is indeed seen as the Law of Iterated Expectations: E,[f] = E,E;[f | w]
for any bounded measurable function f.

This subsection establishes how the consistency conditions among prior, condi-
tional expectations, and information sets lead to the conditional expectation at a
given state being equal to the expectation with respect to the Bayes conditional prob-
ability at that state. To that end, let B(€2,X) denote the set of bounded measurable
functions f : (@, %) — (R, Bg), where Bg is the Borel o-algebra on R.

Call a mapping E : B(Q2, %) — B(Q, %) an expectation mapping if it satisfies the
following two measurability conditions: (i) {w € Q | E[f | w] > r} € ¥ for each
(f,r) € B(,X) xR; and (ii) [E(w)] ={w € Q |E[- | @] =E[ |w]} € Zforallw € Q.
Henceforth, denote E[f | w] = E(f)(w) for any (f,w) € B(, %) x Q.

An (expectation) model is a tuple ﬁ = (Q, %, u, P,E) such that (2,3, u, P) is a
probability space endowed with a possibility correspondence (conditions on (€2, ¥, u, P)
are the same as in epistemic models) and that E is an expectation mapping. The
model satisfies Entailment if E[lp.y | -] = 1. The model satisfies Self-Evidence of
Ezpectations if P(-) C [E(:)]. The model satisfies Invariance (or the Law of Iterated
Expectations) if

u(E) = /QE[]IE | w]u(dw) for each E € .

Call a model reqular if it satisfies Entailment, Self-Evidence of Expectations, and
the Law of Tterated Expectations, and if each E[- | -] satisfies the following four prop-
erties: (i) f(-) > 0 implies E[f | -] > 0 (Non-negativity); (ii) Elclg | -] = ¢ for all
¢ € R (Constancy); and (iii) E[f + ¢ | -] = E[f | -] + E[g | -] for all f,g € B(Q,X%)
(Additivity); and (iv) f, — Iy implies E[f,, | -] — Iy (Continuity). These four prop-
erties on E[- | -] are standard conditions that characterize the expectation operator
with respect to a countably-additive probability measure (e.g., Samet, 2000)@ The
following proposition derives the Bayes conditional expectations from the consistency
conditions.

Proposition 8. If an ezpectation model §3 is reqular, then (1) E[f | w] = [, f(@)te(w, d)
for each (w, f) € QxB(Q, %), where tg is a type mapping such that tg(w, E)u(P(w)) =
w(ENPw)), (i) P(-) C [E(-)], and (iii) for any fired w € Q, P(w) 2, [E(w)]. The
converse holds if u(P(-)) > 0.

In a regular expectation model, since each p(- | P(w)) is additive and since
w([E(-)] | P(-)) = 1, the law of iterated expectations holds: for any f € B(2, ¥),

E[E[f | @] | w] =E[f | w] for any w € Q.

In a regular expectation model, the expectation mapping E[- | -] induces the type
mapping tg through tg(w, E) := E[lg | w], and the type mapping satisfies tg(w, F) =

4“Note that Homogeneity (E[cf | -] = cE[f | -] for all (¢, f) € R x B(£2, %)) and consequently the
linearity of the expectation mapping follow from Additivity and Continuity.
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w(E | P(w)), provided u(P(w)) > 0. Each tg(w,-) is countably additive. Moreover,
[tr(w)] = [E(w)] € X because [E(w)] = {0 € Q | E[lg | ®] = Ellg | w] for all E € ¥}
holds. Self-evidence of Expectations turns out to be Self-Evidence of (p-)Beliefs in
that P(-) C [tg(-)]. Entailment is expressed as tg (-, P(-)) = 1. Thus, if an expectation
model (2, ¥, u, P,E) is regular then so is the epistemic model (Q, %, u, P, tg).

In a regular epistemic model, the type mapping ¢ induces the expectation mapping
Eolf | w] := [, f(@)t(w, dw). Since Ey[lg | w] = t(w, E), it can be seen that E[f | -] €
B(2, %) for any f € B(Q2,%). Indeed, (2,3, i, P, E;) is a regular expectation model.
It can be seen that ¢t = tg, and E = E,,.

With these in mind, I provide the proof sketch for Proposition [§l For any given
regular expectation model, the corresponding regular epistemic model satisfies The-
orem (I} Then, the corresponding expectation model (which reduces to the original
expectation model) satisfies the statement of Proposition [§]

One can also establish the agreement theorem (Proposition [2]) in a regular inter-
active expectation model ((2,%, u), (P;,E;)icr). As the proof is similar to that of
Proposition [2] it is omitted.

Corollary 7. Let (2, %, u), (P, E;)icr) be regular, and let f : (2,%) — (R, Bg)
be a bounded non-negative measurable function with M := sup,.q f(w) < oco. Let
Xi={w e Q|El[f |w] =1} foreachie I, andlet X :=(,.; X;. If u(CP(X)) >0,
then |r; —r;| < (L—p)M for alli,j € I. Especially, if 1(C(X)) > 0, then r; = r; for
alli,jel.

7.4 Prior-consistent Conditional Probability Systems

Suppose that an agent’s beliefs at each state w are dictated by a conditional probabil-
ity system (CPS), a collection of types at w for conditioning events. CPSs are used for
epistemic analyses of dynamic games (e.g., Battigalli and Siniscalchi, 1999, 2002)17[_5]
Suppose also that the agent has information sets at w for conditioning events. The
consistency conditions among the prior, the conditional type mapping, and the con-
ditional possibility correspondence imply that the conditional type mapping forms a
CPS derived from the prior and the conditional possibility correspondence.

Throughout the subsection, let (€2, %) be a measurable space, and let C be a sub-
o-algebra of ¥. Let C* := C\ {0}. A collection of countably-additive probability
measures (V(- | C))oec+ on (2,%) is a conditional probability system (CPS) if (i,
Normalization) v(C' | C') =1 for all C' € C* and if (ii, the Chain Rule) v(E | D) =
v(E | C)v(C| D) forall (C,D,E)eCt xCtxX with ECCCD.

Now, a model is a tuple q = (Q,5,C, p, (P(- | O))cec+, (t(+,- | C))cec+) with the
following three properties. First, p is a countably-additive prior probability measure
on (£2,%).

45Gee also Fukuda (2024) and Guarino (2017) for canonical constructions of CPSs.
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Second, a conditional possibility correspondence P(- | -) : Q x CT — C* satisfies
the following three conditions: (i) K(E | C) :=={w € Q| P(w | C) C E} € ¥ for
each (E,C) € ¥ x C*; (ii, Normalization) P(- | C) C C (i.e., K(C | C') = Q) for each
C € C'; and (iii, the (qualitative) Chain Rule) P(w | C') = P(w | D) N C for any
(w,C,D) € QxCT xCt with C C D and P(w | D)NC # 0. The (qualitative) Chain
Rule implies K(FE | C)NK(C | D) C K(FE | D) for any (C,D,E) € Ct x Ct x X
with E C C C D[

Third, a conditional type mapping t(-,- | -) : @ x ¥ x C* — [0, 1] satisfies the
following two measurability conditions: (i) BP(E | C) :={w € Q| t(w,E | C) > p} €
¥ for each (E,C,p) € ¥ x CT x [0,1]; and (ii) [t(w | C)] :={w € Q| t(w,- | C) =
tw,-|C)} eC™.

The model satisfies Invariance if, for any C € CT,

MEﬂCﬁiAﬂME]CMM@.

The model satisfies Entailment if t(-, P(- | C') | C') = 1 for each C' € C*. The model
satisfies Self-FEvidence of (p-)Beliefs if P(- | C') C [t(- | C)] for every C' € CT. If each
t(w,- | C) is monotone, then the model satisfies Entailment iff K(- | C) C BY(- | C).
The model satisfies Self-Evidence of Beliefs iff BP(- | C') C K(BP(- | C) | C) for all
(p,C) €]0,1] x C*.

The model is regular if each t(w,- | -) is a CPS and if it satisfies Invariance,
Entailment, and Self-Evidence of Beliefs. In the regular model, t(w, [t(w | C)] | C) =1
for all (w,C) € Q x C*[7]

With these in mind, one can extend Theorem [lI| to the case with conditional
probability systems.

Proposition 9. If the model is regular, then (i) u(P(w | C))t(w, E | C) = pw(E
Plw | @) for all (w,E,C) € Qx X xC*; (i1)) Pw | C) C [tw | C)|NC for all
(w,C) € Q@ x C*; and (iii) for all (w,C) € A xCT, P(w|C) 2, [t(w | C)NC. The

converse holds when u(P(-|-)) > 0.

Since the proof is similar to that of Theorem [I] the proof is omitted.

Three remarks are in order. First, Proposition [J] generalizes Theorem [I] in the
sense that the theorem can be seen as a special case C = {0, Q}ﬁ Second, in the first
part of the proposition, I have not used the fact that each ¢(w, - | -) is a CPS. The other
conditions imply that each t(w,- | -) satisfies Normalization. If pu(P(- | -)) > 0 then
the other conditions also imply that each t(w, - | -) satisfies the Chain Rule. Third,
in a discrete model (i.e., Q is countable, 3 = 2% and p({-}) > 0), the conditional
possibility correspondence is uniquely given by P(w | C') = [t(w | C)|N C.

46The proof goes as follows. If w € K(E | C) N K(C | D) then P(w | C) C E and P(w | D) C C.
Then, P(w| D) =P(w|D)NC C P(w|C)C E. Thus, w € K(E | D).

47Di Tillio, Halpern, and Samet (2014) study the consequence of this introspection property.

48Technically, the assumption that P(- | -) € C* implies P(- | -) # 0 (i.e., K(E | )NK(=E | -) = 0).
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One can also define an interactive epistemic model for_> CPSs and establish an
agreement theorem for CPSs in a regular interactive model €2 := (2, %,C, u), ((B;(- |

), ti(++ | C))cect)ier) 7

Corollary 8. Let T be regqular. If p(CP((,e i@ € Q| t(@, E | D) =} | D)) > 0,
then |r; — ;| <1 —p foralli,j € 1. Especially, if p(C((;c i@ € Q| ti(0, £ | D) =
ri} | D)) >0, then r; =1; for alli,j € I.

In fact, the form of agreement theorem for CPSs given by Corollary |8 is a con-
sequence of Proposition [2| in the sense that once a conditioning event D is fixed,
t;(-,- | D) is a type mapping. Thus, the proof of the corollary is omitted.

7.5 Proper Regular Conditional Probabilities

Here I discuss the following previous approach to accommodate agents’ prior and
posterior beliefs on a general measurable space. Namely, Brandenburger and Dekel
(1987) employ proper regular conditional probability. Roughly, under the assump-
tion that an agent’s qualitative belief reduces to fully introspective knowledge, the
regular models are a subclass of models in which a type mapping is a proper regular
conditional probability given a o-algebra that represents the agent’s knowledge "]

A regular model in which P forms a partition induces a proper regular conditional
probability. Conversely, a proper regular conditional probability on a o-algebra that
represents an agent’s partitional knowledge yields a regular model.

Let (2, %, u, P,t) be a regular model such that P forms a partition. Let J :=
{E£ € ¥ | E = UypP(w)} be a sub-o-algebra of ¥ that consists of self-evident
events, i.e., 7 ={E € ¥ | E C K(E)} (recall footnote [12)).

It can be seen that ¢ is a proper regular conditional probability given 7, that
is, t satisfies the following four conditions: (i) each t(w,-) is a countably-additive
probability measure; (ii) each mapping t(-, £) : (2, J) — ([0, 1], Bj,1j) is measurable;
(iii) for any (E, F) € ¥ x J,

WENF) = [ to, Eyuldo)
F
and (iv) t(w, F) =1 for any (w, E) € Q@ x J withw € E.
Conversely, let J be a sub-g-algebra of ¥ satisfying the following three properties:
(i) foreachw € Q, P(w) =({EF e J |lwe E}te J; (i) {we Q| Pw) CE}eX

49Gee Tsakas (2018) for agreement theorems for CPSs.

50 Although Kajii and Morris (1997a)) provide still another approach, they take a different route
from Brandenburger and Dekel (1987)) and this paper. They define an equivalence relation on the
collection of events 3 in a way so that events E and F are equivalent if £ =, F (i.e., u(EAF) = 0).
Then, they define an agent’s p-belief operator on the collection of equivalence classes instead of 3.
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for each £ € ¥; and (iil) J ={E € X | E = U,k P(w)}ﬂ Let t be a proper regular
conditional probability on (€, 3, u) given J such that [t(w)] € X for each w € Q.
Now, one can show that (2,3, u, P, t) is a regular model.

7.6 Concluding Remarks

This paper studied implications of the consistency conditions among prior, poste-
riors, and information sets on introspective properties of qualitative belief induced
from information sets. The consistency conditions are: (i) the prior belief is equal
to the expectation of the posterior beliefs (Invariance); (ii) qualitative belief entails
probability-one belief (Entailment); and (iii) qualitative belief in one’s own quan-
titative beliefs (Self-Evidence of Beliefs). The main benchmark result (Theorem
states that a model satisfies the consistency conditions iff the agent’s information sets
form a partition almost surely and her posteriors coincide with the Bayes conditional
probabilities given the information sets. The theorem extends to the case in which
the prior is a capacity (Proposition E[) and to Bayes conditional expectations and
conditional probability systems (Propositions |8 and @

The main implication of the theorem is that the framework of this paper provides
a tractable extension of the standard partitional model of knowledge and probabilistic
beliefs to a setting in which an agent’s information sets may be uncountable (e.g.,
the examples in Section . Section [5| has extended the agreement theorem, the
no-trade theorem, and the epistemic characterizations of correlated equilibria in a
general state space under the assumptions summarized in Remark [I}

The main theorem also has theoretical implications. First, the posterior at each
state is uniquely determined whenever the prior puts positive probability to an in-
formation set (Corollary . Second, to introduce fully introspective knowledge in a
quantitative belief model, the partition generated by the type mapping is a unique
partition compatible with the consistency conditions (Corollary . This result jus-
tifies the definition of an information partition by the support of each type in the
previous literature. Third, in a discrete model, the information sets necessarily form
a partition (Corollary . I discussed its implications when the information sets do not
form a partition, i.e., for qualitative belief violating Truth Axiom or non-introspective
knowledge violating Negative Introspection (Corollaries |4/ and . Forth, while quali-
tative and probability-one beliefs may differ, both satisfy Truth Axiom almost surely
(Corollary [6).

51The idea behind these three assumptions is that not all o-algebra represents the notion of
knowledge that comes from an information partition. The first assumption guarantees that the
smallest event P(w) containing each w exists. Since J is a o-algebra, P forms a partition. The
second assumption is the measurability condition of an (epistemic) model by which the knowledge
operator associated with P is well-defined. The third assumption states that the given o-algebra
J is compatible with the notion of knowledge derived from P. Brandenburger and Dekel (1987)
do not impose such properties on o-algebras because they do not study knowledge coming from an
information partition but probability-one belief.
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As avenues for future research, it would be interesting to study epistemic analyses
of other solution concepts such as mixed-strategy Nash equilibria, various notions of
a core in cooperative games and exchange economies with asymmetric information,
and the robustness of solution concepts with respect to incomplete information. This
paper suggests that the framework of this paper enables one to study such interesting
topics in a general state space.

The discussions in Section [7| also suggest several interesting avenues for future
research. First, as Propositions [5] and [f] studied how the additivity of types plays a
role in negative introspection of beliefs, it is interesting to scrutinize a link between
prior and posteriors (or an “updating rule”) that is consistent with non-partitional
information processing. In so doing, it is interesting to explore the role of additivity.
It would also be interesting to further study the connection of an epistemic model to
the decision-theory literature (e.g., Ghirardato, [2001; Mukerji, 1997)). The connection
to the decision theory literature is interesting also in the sense that this paper pro-
vides a tractable model of interactive expectations, where agents reason about acts
(i.e., random variables). Going further, it would also be interesting to incorporate
ambiguity[*?]

Second, the new tractable frameworks that this paper has provided may be useful
for epistemic analyses of games. In Section[7.3] agents reason interactively about their
expectations of a random variable. In Section [7.4] agents reason about conditional
qualitative belief (i.e., a conditional possibility correspondence) and conditional prob-
abilistic belief (i.e., beliefs given by a conditional probability system). For instance,
the framework of this paper may be used to provide an epistemic analysis of dynamic
games in which agents with conditional qualitative beliefs engage in conditional or
counterfactual reasoning. While the role of qualitative beliefs has now been well un-
derstood in the context of static games, it has not been well studied in the context
of dynamic games.

Lastly, it would also be interesting to study the relation among prior, posteriors,
and information sets in the context of a generalized state space model of unawareness,
where each agent possess both qualitative and probabilistic beliefs. The current
literature has focused on one kind of beliefs at a time (either a model of knowledge
and unawareness or that of probabilistic beliefs and unawareness).

A Appendix

A.1 Section [3

Proof of Theorem[1. Suppose that 5) is regular. First, Self-Evidence of Beliefs im-
plies Part (ii): P(-) C [t(+)]. Second, since the model is regular, it follows that each

52Gee, for instance, Kovach (Forthcoming) for a recent study on Bayesian updating under multiple
priors.
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t(w,+) is monotone and the model satisfies Entailment. Then, the model satisfies
Certainty of Beliefs. Third, since each ¢(w, -) is monotone and ¢(-, [t(-)]¢) = 0, I show
w(ENt)]) <t E)u([t(-)]). Observe that if © € [t(w)]¢ then [t(w)] C [t(®)]°. Thus,

/ @, [Hw))pu(d) < / (@, [H(@)) i) = 0,
[t(w)]e [t(w)]e

where the inequality follows because each ¢(@, -) is monotone and the equality because
t(-, [t(-)]°) = 0. Hence,

W(E N [{(w)]) = / 1@, E N [t(w)))ldi)

&, E)pu(do &, [tH(w)]) p(de
< [ e mman) + [ i )

_ /[ @ Blds) =t E)u(t()

The first equality follows from Invariance. The inequality follows because each (@, -)
is monotone and additive. The second equality follows from one of the previous
arguments. The last equality follows because t(@, F) = t(w, E) for all © € [t(w)].
Fourth, since each t(w,-) is monotone and additive and the model satisfies Cer-
tainty of Beliefs, it follows that ¢(-, E) = ¢(-, E N [t(:)]) for all E € X. Fifth, T show

W(E A [O)]) 2 ¢ E)u(t()]). Indeed,

pENHwW)]) = /[t( ! t(w, B0 [Hw)])u(dw)

= t(w, EN [t(w))p(t(w)]) = tw, E)u(tw)])-

The first inequality follows from Invariance. The first equality follows from the defi-
nition of [t(w)] and the second from one of the previous assertions.

Fifth, I obtain:
p(E N Hw)]) = tw, E)u(t(w)))- (3)
Substituting £ = P(w) into Expression yields p(P(w)) = wp([t(w)]), given that
the model satisfies Self-Evidence of Beliefs and Entailment. Thus, I obtain Part (iii):
[t(-)] 2, P(-). I also obtain Part (i): pu(E N P(w)) = t(w, E)u(P(w)).

I show the converse assuming u(P(-)) > 0. Each t(w,) = p(- | P(w)) is a
countably-additive probability measure. Entailment follows because t(w, P(w)) =
w(P(w) | P(w)) = 1. Self-Evidence of Beliefs holds by supposition. I show Invariance.
Since p([t(w)]) = p(P(w)) > 0, let ([t(wy)])n be a countable partition of €. Since it
follows from the assumptions that ¢(w,, E) = u(E | P(w,)) = p(E | [t(w,)]), I obtain

p(E N[t (wn)]) = p([t(wn)t(wn, E) = 4( )]t(w’,E)u(dw')~

By summing over all n, I obtain Invariance, as desired. O
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A.2 Section [4]

Proof of Corollary[9 As Parts and (3) follow from Part , I only prove Part
. Also, it is sufficient to show that implies . Self-Evidence of Beliefs
implies P(-) C [t(-)]. Thus, the partition {P(w)},ecq is a refinement of {[t(w)]},eq-
Suppose to the contrary that w’ € [t(w)] \ P(w). Since P(w) N P(w') = 0, it follows
that pu(P(w)) < p(P(w)) + u(P(W)) = pu(P(w') U P(w)) < u([t(w)]), a contradiction.
Thus, [t(-)] = P(:). Since the model is regular and pu(P(-)) > 0, the other property,
t(-,-) = p(- | P()), follows from Theorem [I] O

Proof of Corollary |3 1. First, the equivalence follows from Theorem [l| and the
supposition that p({-}) > 0. Second, it suffices to show B'(-) C K(-) as En-
tailment implies the converse set inclusion K(-) C B(:). If w € BY(FE) then
t(w, E) = 1. Then, u(E N P(w)) = p(P(w)), and thus pu(P(w) N E) = 0. Since
w({-}) >0, I have P(w) N E° =0, i.e., P(w) C E. Thus, w € K(F).

2. If the model is discrete, then the first part implies that B! = K satisfies
Truth Axiom. Conversely, let B! satisfy Truth Axiom. It suffices to show that
t(w,{w}) > 0. Indeed, if this is the case, then 0 < pu(P(w))t(w, {w}) = p{w}),
Q) is countable, and ¥ = 2. Thus, suppose to the contrary that t(w, {w}) = 0
for some w € 2. Then, w € BY(P(w) \ {w}) C P(w) \ {w}, a contradiction.

]

A.3 Section [l
Lemma 1. In a regular model (2,3, u, P,t), BPBP(:) C BP(-).

Proof of Lemma(1 If p =0 then the statement holds because BF(-) = Q. Let p > 0.
If we BP(BP(E)) then t(w, BP(E)) > p > 0. If [t(w)] N BP(E) = 0 then BP(FE) C
[t(w)]¢. Then, t(w, [t(w)]) > p > 0, a contradiction to t(w, [t(w)]) > t(w, P(w)) =1
Then, there is @ € [t(w)] N BP(F). This implies t(w, E) = (0, E) > p, ie, w €
BP(E). O

Note that, in a regular model, BP(-) C K B?(-) C BPBP(-) C BP(.).

Proof of Proposition[]l Since K;(-) C Bj(-), it is enough to show BjCP(-) C CP(-).
For any n € N,

B;(BY)"(-) € B By(BY)""'(-) € BYBY(B])"(-) € Bj(BY)" (),

where the last set inclusion follows from Lemma It follows that B}(BY)"(-) C
(BY)™(+). Taking the intersection with respect to n € N,

BiCr() = By <ﬂ(35’)”(‘)> C () BIB)"() S [ (BY"(-) =C().

neN neN neN
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Proof of Proposition[3. Without loss, let p > 0. Let F := CP(X). Observe F C
BY(F), F C BY(X), and u(F) > 0.

If [t;(W)] N X; # 0 then [t;(w')] C X;. If W' € BY(X) then t;(w', X) > p > 0, and
thus ) # P;(w)NX C [t;(w')]NX. This implies that if w’ € BY(X) then [t;(w")] C X;.
Since F' C BY(F) C BYBP(X) C B?(X) (where the second set inclusion follows from
Self-Evidence of Beliefs and Entailment, and the third from Lemma7 ti(w', E) =1
for any w’ € BY(F).

By Invariance and Certainty of Beliefs,

u(E N BY(F)) = /Q(HBf(F) (W)ti(w, EN BY(F)) + Limpry e (W)ti(w, EN B (F)))pu(dw)
-/ e EJuld) = rn(BL(F)).

Thus, u(E | BY(F)) = r:
Since F' C BY(F), B} (F) C BYBY(F). Together with Invariance,

p(B;(F) N Bj(F)) = p(B[ (F)) > /BP(F) ti(w, B (F))p(dw) = pp(B; (F)).

Thus, p(B}(F) | B}(F)) > p. Then, for any event H,

p(H N BY(F) N Bj(F))  p(B/(F)N Bj(F)) p(H N B/ (F))

u(H | BY(F)) = W(BE(FYNBY(F))  u(BI(F))  u(HNBI(F)NBY(F))

> u(H | BY(F) A BY(F)) - u(BL(F) | BY(F))
> pu(H | BY(F) N BY(F)).

By letting H = E and H = E°,
(1 =p)+pu(E | B(F)N Bj(F)) 2 r; = pu(E | B{(F) N B} (F)).

By exchanging the role of ¢ and j, I get |r; —7;| <1 —p. O]

Proof of Proposition[3 Define A® := {w € Q| x> e} and E := CP(A®). Then,
E C BY(A®) and E C BY(E). If w € (=K;)(—A%), then ) # P;(w) N A® C [t;(w)] N A®.
Thus, (ﬁKi)(—!AE) - {OJ e | X; = fzw Z}

Suppose to the contradiction that pu(E) > 0. I show that the initial allocation e
is not ex-ante Pareto optimal. If w € BY(A), then ¢;(w, A®) > p > 0, and thus, A°N
Pi(w) # 0. Hence, BY(A®) C (—K;)(—A%). Then, E C BY(A%) C (,c;(—=K;)(=4%) C
Nicriw € Q| 2 =5, e;}. Hence, for every w € E and i € I,

/P( )(ul(d),xz(d))) — ui (@, e;(0))ti(w, dD) > & > (1 — p)M.

41



On the other hand, if w € E, then w € BY(F) and thus ¢;(w, E° N P;(w)) =
ti(w, £¢) <1—p. Thus, for allw € E and i € I,

E°NP;(w)
Hence, for all w € F and ¢ € I,
/ (s, 24(@)) — s, €3(@))i(w, ) > 0.
Pi(w)ﬁE
Then, I have
/(u,-(w,xi(w))—ui(w,ei(w))u(dw) = // (ui (0, 24(0)) —u; (@, €;(©) )t (w, do) p(dw) > 0.
E E JPj(w)nE
This implies that e is not ex-ante Pareto-optimal. O

A.4 Section
Proof of Corollary[d. 1. For any E € &,

W(BP(E) N E°) = /B " t(w, BP(E) N E°)pu(dw) + /( e t(w, BP(E) N E)pu(dw)

< / b, ) (o) + / tw, BP(E)) p(dw) < (1 — p)u( BY(E)).
BrE) (52 (B) e

By substituting p = 1, u(K(F) \ E) < u(B*(E) \ E) = 0.

2. This part follows from C!(-) C B}(-) and C(-) C K;(-).
0

Proof of Proposition [ 1 show “(I) = (2).” If w € (=K)(—E), then P(w) N E #
. Thus, there is ' € P(w)N E. Then, t(w,E) > t(w,{w'}) > 0 and thus
w € U,cqop B'(E). Conversely, I show “ = .” Let w' € P(w). Then,
w € (~K)(~{w'}) € U,equoy B"({w'}). Thus, t(w, {w'}) > 0.

I show “(1) = @).” If w € BY(E) then t(w, E) = 1. Then, P(w) C {w' € Q|
t(w,{w'}) > 0} C E. Thus, w € K(E). Conversely, I show “(3) = (1)” by assuming
Entailment. Suppose w’ € P(w) and t(w,{w’'}) = 0. Then, together with Entailment,
w € BY(P(w) \ {w'}). By Condition (@), B'(P(w) \ {w'}) C K(P(w)\ {w'}). Then,
w € K(P(w) \ {w'}) implies w’ € P(w) C P(w) \ {«'}, a contradiction. O
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A.5 Section

Proof of Proposition [3 1. Assume Certainty of Positive Beliefs. If w € BP(F)
then (1 t(w)) C BP(E). By Certainty of Positive Beliefs and (ii), 1 = ¢(w, (T
t(w))) < t(w, BP(E)), ie., w € B'BP(E).

Conversely, w € B'“F)(E) C B'B*“P)(E) for any (w, F) € Q x ¥. By (i) and
(iii), t(w, (T t(w))) = 1 follows because

we () B'B™“P(E) C B! ( N{@ecQlt@E) > t(w,E)}) = BY(1 t(w)).

EeX EeXo

2. If w € (~B")(E) then (} t(w)) C (=BP)(E). By (ii), 1 = t(w, (| tw))) <
t(w, (~BP)(E)), i.e., w € B\(~B?)(E).

Conversely, take w € €. I start with showing that {® € Q | t(®, E) < p} C
B'({w € Q | t(®,E) < p}) for all (E,p) € ¥ x [0,1]. If p = 1, the statement
follows from ¢(-,€2) = 1. Thus, assume p < 1. For each n € N with p + % <1,
let E, := (~BPT%)(E). Since E, C BA(E,), {® € Q| (@, E) <p} =(,, Em C
BY N, Em) = B'({® € Q[ t(, E) < p}).
t

Now, I show t(w, (] t(w))) = 1. By the previous assertion, (i), and (iii), I have

we (] B'{weQ|t@,E) < tw,E)}) C B' ( (N{@eQ|t@E) < t(w,E)})

EEEO EEZO

= B'({ t(w)),

which implies ¢(-, ({ t(w))) = 1.
O]

Proof of Proposition[f 1. Assume Self-Evidence of Positive Beliefs. If w € BP(F),
then t(w', E) > t(w,E) > p for any ' € P(w). Thus, P(w) C BP(E), i.e.,
w € K(BP)(E). Conversely, fix (w,F) € Q x ¥. Since w € B'@H(E) C
K(B'@P)(E), if o' € P(w) then ' € BN (E) ie. t(w, E) > tw, E).

2. Assume P(-) € (L (). If w € (=B?)(E) and if &' € P(w), then t(u', E) <
t(w, F) < p. Thus, P(w) C (=BP)(E), i.e.,, w € K(—BP)(F). Conversely, let
w € P(w) and F € 3. If t(w, E) = 1 then t(w', F) < t(w, E). If t(w, F) < 1, let
e > 0 be such that ¢. := t(w, E) + ¢ < 1. Since w € (-B%)(E) C K(-B%*)(E),
[ have w’ € P(w) C (=B%)(FE). That is, t(w', E) < t(w, E) 4+ €. Letting e — 0
yields t(o', F) < t(w, E).

[

43



Proof of Proposition[]. Take any (w, F) €  x ¥. On the one hand, it follows from
Invariance that

W(ENP) = [ 1@ B0 P@)(ds) (4)

On the other hand, since P(-) C [t(+)], it follows that

@, EN P(w)) = L) (@0)H(@, EN P(w)) + Lywye (@)@, EN Pw))
= ]I[t(w)} (d})t(w, EnN P(w)) + H[t(w)}c(‘:}) t((:}, EnN P(w) N P((Z)))J

#(@,0)=0

= L) (@)t (w, E N P(w)).

Then, the Choquet integral given by Expression (4] reduces to

H(E N P) = [ T (@)t B N PGl
— tw, .0 P)u([t): 5

Substituting £ = (Q yields

p(P(w)) = t(w, 2N Pw)p([tw)]) = tw, Qu(tw)]) = p(lt(w)]),

where the second equality follows from one of the assumptions and the third from
the assumption that t(w, ) is a capacity (precisely, t(w,2) = 1). Hence, substituting

w(P(w)) = p([t(w)]) into Expression (j5)) yields
p(E N Pw)) = tw, EN Pw))u(P(w)),

as desired. [

B Additional Examples

Example 4. Let (£2,Y)

({wi,wa,ws}, 29), and let u = (1,0,0). Let Pj(w
) = n
|

= 1)
{wi} and Pj(wy) = Pi(ws) = {ws,ws} for each ¢ € I = {1,2}. Let t;(wy,:) =
and t;(ws, ) = ti(ws,-) = (0,4,1 — ), where oy # ap. Then, C(();c,{w € Q
ti(w, {w2}) = ai}) = {w2, ws}. o

Example 5. As in Monderer and Samet (1989, p. 176), suppose that the agent
is reasoning about the realization of a random draw from [0,1]. Let (2,3, u) =
([0,1], Bjo,1, 1), where 1 is the Lebesgue measure on the Borel o-algebra B . Let
P(-) =[0,1], i.e., the agent considers every number possible at each realization. Her
qualitative belief reduces to (degenerate) knowledge in that she only knows that the
draw is from [0, 1] at each state. Her type at each w is t(w, ) = u(:). By construction,
the model is regular. At any realization, the agent does not know that the draw is
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an irrational number, as she does not observe the realization. She, however, believes
with probability one that the draw is an irrational number. In fact, she 1-believes
any event F at any state w as long as u(F) = 1. Thus, for any £ € ¥\ {Q} with
w(E) = 1, it follows that B'(F) \ K(F) = Q and u(B'(E) \ K(F)) = 1. For any
such E and p > 0, BP(E) = Q € () = BPK(E). While the agent’s qualitative belief is
fully introspective knowledge, probability-one belief and knowledge differ. While K
satisfies Truth Axiom, B! violates Truth Axiom. Also, B! fails the strong conjunction
property that K possesses: for any & € 2% with € € %, Npee K(E) € K(NE).

O

Example 6. As in Example |5 suppose that the agent is reasoning about the re-
alization of a random draw from Q = [0,1]. The agent’s prior p is the Lebesgue
measure on (€, %) = ([0,1], Bp,)). At each realization w € [, 1] U ([0,1] N Q), the
agent considers P(w) = [0,1]\ Q possible. At cach w € [0, 3)\ Q, the agent considers
P(w) = [0,1] possible. The agent’s type at each w remains unchanged: t(w,-) = pu(-).
The model is regular. The agent’s qualitative belief violates all of Truth Axiom,
Positive Introspection, and Negative Introspection. While Truth Axiom holds u-
almost surely (as a consequence of Corollary @, the introspection properties do not
even in this sense. For example, if £ = [0,1] \ Q then pu(K(E)\ KK(E)) = % and

2

(K (E)\ K(-K)(E)) = 1. Also, K(E) ¢ B'K(E). 0
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