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Abstract

We study a behavioral SIR model with time-varying costs of distancing. We

explore the consequences of distancing fatigue and public policies. For a second

wave of an epidemic to arise, a steep increase in distancing cost is necessary. Dis-

tancing fatigue alone cannot trigger a second wave. However, public policies that

discontinuously affect distancing cost can. We characterize the largest change in

the distancing cost that will not cause a second wave. Finally, we provide a nu-

merical analysis of public policies under distancing fatigue and show that an early

strict lockdown can lead to unintended adverse consequences.
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1 Introduction

During an epidemic, individuals’ health and potentially their lives are at risk, as each

interaction with another person could lead to infection. To protect themselves, people

often limit their social interactions. Two primary factors influence this protective be-

havior: the probability of getting infected and the cost of social distancing. This paper

examines how fluctuations in distancing cost shape individuals’ distancing behavior and

the resulting disease dynamics.

The reasons for variations in distancing cost are numerous. For example, distancing

fatigue leads to a gradual increase in distancing cost as individuals deprive themselves

of social interaction. WHO (2020) defines “pandemic fatigue” as demotivation to fol-

low recommended protective behaviors, emerging gradually over time.1 Franzen and

Wöhner (2021) document distancing fatigue among young adults in Switzerland during

the COVID-19 pandemic.2 Religious or seasonal festivals make it more difficult for people

to avoid social interactions and, thus, correspond to a sudden and short-term rise in dis-

tancing cost.3 Government policies enacted during an epidemic effectively decrease the

distancing cost. For example, closures of restaurants and movie theaters reduce the avail-

ability of activities with individuals interacting and thereby encourage social distancing.

Conversely, lifting such a policy increases the distancing cost. Hatchett et al. (2007),

Bootsma and Ferguson (2007), and Caley et al. (2008) demonstrate that relaxations in

non-pharmaceutical interventions increased social activity during the 1918 influenza pan-

demic. Nguyen et al. (2020) finds an increase in mobility soon after US-states reopened

during the COVID-19 pandemic.

There is growing evidence that distancing fatigue reduces the effectiveness of a mit-

igation policy. Goldstein, Yeyati, and Sartorio (2021) show that after four months of

lockdown during the COVID-19 pandemic, non-pharmaceutical interventions had a sig-

nificantly lower effect on reducing fatalities. Petherick et al. (2021) document a decline

in the adherence to protective behaviors against COVID-19 in 2020 from a sample of

1The root of distancing fatigue can be traced to research documenting how social groups increase the
well-being of individuals by offering safety and increased odds of survival. See, for instance, Harlow and
Zimmermann (1959), Bowlby (1969), Baumeister and Leary (1995), Eisenberger (2012), and Matthews
et al. (2016). Adda, Boucekkine, and Thuilliez (2024) show that policy-induced reductions in mobility
have a negative effect on mental health.

2There is growing evidence that distancing fatigue reduces the effectiveness of a mitigation policy.
See, for instance, Goldstein, Yeyati, and Sartorio (2021), Joshi and Musalem (2021), Petherick et al.
(2021) and Du et al. (2022).

3According to the American Automobile Association, nearly 56 million people traveled dur-
ing the 2019 Thanksgiving (https://newsroom.aaa.com/2022/11/thanksgiving-travel-ticks-up-just-shy-
of-pre-pandemic-levels/). The Chinese New Year may have been “the biggest human migration
on the planet” (https://edition.cnn.com/travel/article/lunar-new-year-travel-rush-2019/index.html), at
least until 2019.
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14 countries. Joshi and Musalem (2021) document larger reductions in mobility during

the COVID-19 pandemic, while lockdowns remain in place, are associated with higher

levels of fatigue. Du et al. (2022) attribute distancing fatigue to a potential reason for

the reduced impacts of non-pharmaceutical interventions in the fourth COVID-19 wave

in Hong Kong in October 2020.

Motivated by the empirical work outlined above, we explore an SIR (susceptible-

infected-recovered) epidemiological model in which myopic individuals choose how much

to distance while the distancing cost may change over time in the context of distancing

fatigue and public policies. In a framework with distancing fatigue, the cost of distancing

increases in the discounted amount of past distancing. We show that the prevalence

remains single-peaked. After the prevalence peaks first, the growth of fatigue slows down

up to the point at which fatigue starts decreasing. As a consequence, a second wave of

the infection cannot arise from distancing fatigue alone. Yet, quantitatively, distancing

fatigue heightens peak prevalence potentially burdening the health care system.

While distancing fatigue cannot cause a second wave of an epidemic, a sharp, sudden

rise in the cost of distancing can. Public holidays and festivities (when it becomes chal-

lenging for individuals to keep social interactions low) or the termination of a mitigation

policy (when the distancing cost discretely rises) can generate such sharp increases. To

better understand the implications of these increases, we characterize a threshold dis-

tancing cost function: by how much would, at each point in time, the distancing cost

have to increase or decrease instantaneously to change the sign of the slope of prevalence.

The threshold distancing cost is particularly useful for two purposes. First, when

the prevalence is increasing, our characterization shows how much the cost of distancing

would have to fall for the prevalence to start decreasing. This information is crucial

for a policymaker weighing the harshness of non-pharmaceutical interventions in an at-

tempt to reverse the course of an epidemic. Second, when the prevalence is decreasing,

it determines the largest amount by which the distancing cost could increase without

causing a second wave, thereby providing vital information for a policymaker considering

to lift a mitigation policy. If policymakers base their decisions to relax policies solely on

current prevalence and immunity without considering the impact of distancing fatigue,

an unintended second wave may arise. Indeed, the epidemiologist Marc Lipsitch argued

in April 2020 that the second wave in the fall to be caused by seasonal changes would

lead to tighter and costlier social distancing, as he put it: “We will have a harder time

controlling coronavirus in the fall ... and we will all be very tired of social distancing and

other tactics.”4

4https://edhub.ama-assn.org/jn-learning/audio-player/18468053 (Last accessed: January 4, 2024).
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We conduct a numerical analysis, drawing parallels with the COVID-19 lockdown in

China, on the impact of the interplay between a stringent lockdown during the initial

phase of an epidemic and distancing fatigue. We find that such a lockdown can lead to

a greater total number of infections compared to a scenario without a lockdown. The

lockdown at the beginning of an epidemic postpones the spread of the infection. Once

it is lifted, individuals have accumulated a substantial level of distancing fatigue. As

a consequence, lifting the lockdown leads to less endogenous protective distancing and

thus more social interactions than without a prior lockdown. Thus, the combination of

distancing fatigue and the sharp rise in distancing cost once the lockdown is lifted, can

trigger a severe second wave of the epidemic causing a greater total amount of infections.

Finally, we illustrate how our model with a time-varying distancing cost can be applied

to compute the required policy measures affecting individuals’ incentives to distance,

such as restaurant closures, to achieve a desired transmission rate. While several papers

have studied the optimal transmission rate, our model takes into account endogenous

distancing choices responding to flexible and time-varying policy measures.

Related Literature. To the best of our knowledge, this is the first paper to study the

effects of a time-varying cost of distancing in an SIR model with behavior and establish

analytical results about the dynamics of the disease.

The building blocks of the SIR model were set by the seminal work of Ross and

Hudson (1917) and Kermack and McKendrick (1927). The incorporation of preventive

behavior is more recent. Reluga (2010), Fenichel et al. (2011), Chen (2012), and Fenichel

(2013) introduced social distancing into SIR models and provided numerical analyses of

equilibrium trajectories.

The assumption of myopic decision-making in SIR models has recently been leveraged

to make the analysis more tractable. Engle et al. (2021) propose a behavioral SIR model

with myopic agents but with meeting rates that vary across individuals. Dasaratha (2023)

analyzes a model where the individuals are uncertain whether they are infected. Carnehl

et al. (2023) establish that due to the preventive behavior the peak prevalence is non-

monotonic in the transmission rate. Their model, unlike the one here, does not allow for

variation in the cost of distancing. Avery (2024) studies the interplay between distancing

behavior and the willingness to get vaccinated. He models fatigue as an increase in the

cost of distancing after a certain amount of time, independently of the previous amount

of distancing. McAdams (2021) highlights the advantages of the myopic approach and

provides an excellent review of the literature.5

5McAdams, Song, and Zou (2023) study a model with fully forward looking individuals where each
individual’s distancing cost varies over time because it depends on other non-infected individuals’ dis-
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A strand of literature argues that behavioral SIR models without additional time

variation cannot fit the path of the COVID-19 pandemic. Droste and Stock (2021)

document that a strong self-protective response during the early months of the pandemic

was followed by a close-to-zero response during summer. Atkeson et al. (2021) argue that

“pandemic fatigue,” a decline in the strength of the behavioral response, explains the

second wave of infections and deaths in the late fall and winter.6 Our contribution is to

provide a micro-founded behavioral SIR model with distancing fatigue. Our paper also

sheds light on how distancing fatigue and public policies change distancing costs and may

lead to the second wave.

Papers such as Brett and Rohani (2020), Gualtieri and Hecht (2021), MacDonald,

Browne, and Gulbudak (2021), and Meacci and Primicerio (2021) have proposed non-

behavioral SIR models to study the effect of epidemic fatigue on the dynamics of an

epidemic. Roughly, such non-behavioral SIR models introduce a new compartment that

corresponds to epidemic fatigue (e.g., a new susceptible compartment with a higher trans-

mission rate due to fatigue). Our contribution is to study distancing fatigue within a

behavioral SIR model. To the best of our knowledge, our paper is the first one that

incorporates distancing fatigue into a behavioral SIR model.

Other papers have studied possibilities and reasons behind a second wave. Rachel

(Forthcoming) argues that lifting a mitigation policy can lead to a second wave without

modeling changes in distancing cost.7 Numerical projections for the COVID-19 pandemic

in Giannitsarou, Kissler, and Toxvaerd (2021) suggest that waning immunity can cause

several waves. Cochrane (2020) demonstrates that multiple waves of infection may occur

when individuals react not to prevalence but to the current death rate, which lags behind

prevalence. Goodkin-Gold et al. (Forthcoming) consider a model without distancing

behavior with vaccinations reducing the number of susceptible individuals. Our paper

differs from those by introducing a new channel, variation in the distancing cost.

2 Model

A continuum of individuals, indexed by i ∈ [0, 1], is infinitely lived with time labeled

by t ∈ [0,∞). The population is divided into three compartments: susceptible (S),

infected (I) and recovered (R). Susceptible individuals can get infected by meeting an

tancing.
6On a related point, Weitz et al. (2020) argue that incorporating fatigue in an epidemiological model

can explain multiple waves of infections.
7McAdams and Day (Forthcoming) endogenize lockdown policies as the outcome of a political process,

where political incentives to enforce a lockdown change over time.
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infected individual. Infected individuals recover at rate γ > 0. This implies that it takes

on average 1/γ units of time to recover. After recovery, individuals acquire permanent

immunity and cannot get infected again. The size of the population is constant over time:

S(t) + I(t) +R(t) = 1 for all t ≥ 0.

Individuals are responsive to the threat of infection and thus might try to avoid it.

We capture this by letting a susceptible individual i choose the level of exposure to the

infection εi(t) ∈ [0, 1] at each point in time. The susceptible individual who chooses

exposure εi(t) at time t gets infected at rate βεi(t)I(t), where β > γ is the transmission

rate of the disease. Less exposure, i.e., lower εi(t), decreases the chance of infection.

In the absence of the epidemic, the individual would go about her daily business with

εi(t) = 1. Conversely, we define i’s distancing at time t as di(t) := 1− εi(t). We assume

that getting infected comes at a cost η ≥ 0 while being susceptible generates a flow payoff

of πS. The assumption that the cost of infection is constant over time is akin to assuming

that the individuals are myopic.8 The standard non-behavioral SIR model corresponds

to the case with η = 0. A reduction in exposure comes at a cost 1
2
ci(t)(1 − εi(t))

2. The

model with shortsighted agent allows for a richer set of results.

More precisely, for each susceptible individual i, the distancing cost is a piece-wise

continuously differentiable function ci : [0,∞) → [c,∞) with the following three proper-

ties: (i) there exists a lower bound c > 0 such that ci(t) ≥ c for all t; (ii) there are at

most a finite number of jump discontinuities of ci, which are common for all individuals

i, at t1 < · · · < tN such that, on each interval (tn, tn+1) with n ∈ {1, . . . , N},9 ċi(t) is a

continuous function satisfying

ċi(t) = F (t, ci(t), di(t)), (1)

where F (t, ·, ·) is a function of i’s current distancing cost ci(t) and her current distancing

level di(t); and (iii) at each tn with n ∈ {1, . . . , N}, ci is right-continuous. At t = 0 and

at any point t of jump discontinuity of ci, the value of ci(t) is exogenously given and

independent of i. In addition, we assume that ci(0) is independent of i and denote it by

c0. A clarification is in order. While ci(t) may depend on the identity of an individual

i, the environment is symmetric due to the common law of motion F (including the

possible jump discontinuities) and the common initial cost c0. Differences in the cost

among individuals might, however, arise due to variations in the choice of distancing.

8This approach has been frequently adopted in the recent theoretical literature on equilibrium social
distancing as it allows for a richer set of results. See, for example, Avery (2024), Engle et al. (2021),
Dasaratha (2023), and Carnehl, Fukuda, and Kos (2023). In contrast, in the model with farsighted
individuals, the cost of infection η serves as a co-state variable (to the probability of being susceptible),
which varies over time. We formally illustrate this point in Appendix B.

9For ease of exposition, let tN+1 = ∞.
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Two forms of time-varying distancing cost are of particular interest: (i) distancing

fatigue—the decline in individuals’ willingness to reduce their social activities to prevent

infections—and (ii) policy interventions such as restaurant closures and lockdowns. We

model in Section 3 distancing fatigue by having individuals’ cost of distancing depend

cumulatively on all the previous distancing decisions. Policy interventions are modeled

in Section 4 as a reduction in the distancing cost ci(t).

A susceptible individual i determines her current exposure level by solving:

max
εi(t)∈[0,1]

πS − ci(t)

2
(1− εi(t))

2 − βηI(t)εi(t). (2)

At each time t, the susceptible individual i takes the value of ci(t) as given, while the

resulting exposure level affects the slope of the distancing cost ċi(t).
10

Let the average exposure be ε(t) := 1
S(t)

∫
εi(t)di, where the integral is taken over the

susceptible individuals. The disease dynamics are governed by the following system of

differential equations:

Ṡ(t) = −βε(t)I(t)S(t), (3)

İ(t) = I(t)(βε(t)S(t)− γ), (4)

Ṙ(t) = γI(t), (5)

for all except possibly a finite number of t, with the initial condition (S(0), I(0), R(0)) =

(S0, I0, 0) with I0 ∈ (0, 1) and S0 = 1− I0. With these in mind, we define an equilibrium.

Definition 1. An equilibrium is a tuple of functions (S, I, R, (ci, εi)i) with the following

three properties: (i) (S, I, R) are continuous functions that satisfy (3), (4) and (5) with

the initial condition (S(0), I(0), R(0)) = (S0, I0, 0), where ε is the average exposure;
11 (ii)

each εi solves (2);
12 and (iii) the distancing cost function ci satisfies (1), where di = 1−εi.

An equilibrium is symmetric if ε = εi for all i.

As the susceptible individual’s objective function is concave in her exposure level, the

first-order condition solves the individual’s problem. In equilibrium, ε := εi and c := ci

for all i since individuals may differ only in the distancing cost ci(t) and ci(0) = c0 for all

10Intuitively, consider a discrete-time model in which, at the start of each period, a susceptible indi-
vidual takes her distancing cost at that time as given. Her resulting exposure level affects her distancing
cost at the beginning of the next period. Our model would correspond to the continuous-time limit of
such a model.

11The assumption of the continuity of (S, I,R) is innocuous in light of our application, as discontinuities
of c affect distancing behavior only.

12That is, εi is a best response to (S, I,R) given ci
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i. Therefore, any equilibrium is symmetric:

ε(t) = max

(
0, 1− βηI(t)

c(t)

)
. (6)

An equilibrium exposure level is lower when the prevalence is higher. Distancing

increases in the cost of infection η and the transmission rate β, and decreasing in the cost

of distancing c(t).

Plugging the expression for exposure (6) into the system of differential equations (3),

(4), (5), and (1) leads to the system of differential equations characterizing an equilibrium.

Our first benchmark result is the existence and uniqueness of an equilibrium.

Proposition 1. An equilibrium exists, is unique and symmetric. In the unique equilib-

rium, the system (S, I, R) satisfies I∞ := lim
t→∞

I(t) = 0, S∞ := lim
t→∞

S(t) ∈
(
0,

γ

β

)
, and

lim
t→∞

ε(t) = 1.

We denote by (S, I, R, c, ε) the symmetric unique equilibrium. Although the distanc-

ing cost function c may have a finite number of jump discontinuities, it can be shown that,

on each interval (tn, tn+1), the system of differential equations admits a unique solution

(S, I, R, c, ε). Since (S, I, R) is continuous, the jump discontinuities of c are exogenously

given, and since ε follows (6), it follows that an equilibrium exists uniquely and is sym-

metric. Since (3) implies that S is non-increasing, the final size of susceptibles S∞ is

well-defined. In the limit, the prevalence disappears and individuals return to full expo-

sure. Similarly to behavioral SIR models with a constant distancing cost such as Carnehl,

Fukuda, and Kos (2023, Lemma 3), one can show that the final size S∞ is positive and

below the threshold of herd immunity γ
β
. Thus, some individuals never become infected:

1− S∞ < 1.

Henceforth, we focus on the case in which the prevalence is increasing at the outset:

İ(0) > 0. Substituting (6) into (4) at time t = 0, this occurs whenever

βS0

(
1− βηI0

c0

)
− γ > 0,

which is satisfied as long as the initial seed of infection I0 is small enough.
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3 Distancing Fatigue

Human nature drives people to socialize, making social distancing increasingly challenging

over time. This section examines the model with distancing fatigue. Our analysis shows

that in a model with endogenous behavior and time-varying costs of distancing, distancing

fatigue alone cannot lead to a second wave: that is, the equilibrium prevalence peaks at

most once. In the following, peak prevalence is defined as a strict local maximum.

We model distancing fatigue using the time-varying distancing cost function:

c(t) = c0 + φ(t), (7)

where the fatigue

φ(t) := k

∫ t

0

e−r(t−τ)(1− ε(τ))dτ

increases in past distancing but the effect of past distancing on fatigue decays over time.

The constant k ≥ 0, the fatigue accumulation rate, captures the rate at which current

distancing increases the distancing cost. The fatigue recovery rate, r > 0, determines the

rate at which the fatigue decays.13

In terms of the marginal change in the distancing cost, equation (7) is written as

ċ(t) = k(1− ε(t))− r(c(t)− c0), (8)

with the initial condition c(0) = c0. This differential equation is a special case of equation

(1) and therefore the existence and uniqueness of equilibrium follow from Proposition 1.

The main result of this section is that distancing fatigue alone does not lead to a

second wave. While the result is stated in terms of distancing fatigue, the proof provides

general sufficient conditions on distancing cost functions that ensure that the epidemic

trajectory is single-peaked.

Proposition 2. Suppose c is given by (7). Provided İ(0) > 0, the prevalence I is single-

peaked.

For a second peak to arise, the prevalence would have to attain a local minimum after

the first peak and then begin to increase again. Our proof shows that for this to occur,

it is necessary that the distancing cost increases sufficiently rapidly after the first peak,

13Baucells and Zhao (2019) provide a decision-theoretic axiomatization of the fatigue utility model of
this form.
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while the prevalence is decreasing. However, when the prevalence is falling, the growth

of fatigue slows down and may even decrease. As a consequence, distancing does not

decrease fast enough to jump-start another wave.

It is worthwhile to note that, in the long term, the distancing cost converges to its

initial level, lim
t→∞

c(t) = c0, and, individuals recover from fatigue, lim
t→∞

φ(t) = 0 as the

infection dies out.

Our findings suggest that distancing fatigue does not affect qualitative features of the

prevalence trajectory. This, however, is not to say that distancing fatigue cannot play an

important role in epidemiological models.

First, it may very well have critical quantitative implications. Goldstein, Yeyati,

and Sartorio (2021), for example, show that after four months of lockdown during the

COVID-19 pandemic, non-pharmaceutical interventions had a significantly lower effect

on reducing fatalities. In our model, the peak prevalence in the model with distancing

fatigue is always higher than the peak prevalence in the model without distancing fatigue,

and the peak prevalence in the model with distancing fatigue is reached no earlier than

the one without distancing fatigue. Thus, distancing fatigue may burden the medical

capacity constraint at the peak prevalence.

Second, distancing fatigue introduces two opposing effects on individuals’ distancing

decisions. On the one hand, when the distancing cost increases due to distancing fa-

tigue, ceteris paribus, the individuals increase their exposure because distancing becomes

costlier. On the other hand, higher prevalence due to distancing fatigue makes it costlier

for an individual to increase exposure. This second effect decreases individuals’ exposure

levels. Hence, to measure the effect of distancing fatigue on exposure, it is also impor-

tant to measure the effect that an increased prevalence has on individuals’ preventive

behavior.

Third, distancing fatigue introduces a negative dynamic spillover to lockdown policies.

By encouraging or enforcing social distancing in the current period, the lockdown reduces

distancing incentives in the future due to accumulated distancing fatigue. Holding lock-

down stringency fixed, lockdown effectiveness declines over time and the likelihood of

a second wave may increase should the lockdown be lifted. Our result that distancing

fatigue alone does not cause the second wave suggests that the second wave may result

rather from the discrete increase in distancing cost from lifting the lockdown policy.
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4 Policy Interventions

The cost of social distancing depends not only on previous exposure decisions but also

on other factors such as public health policies. This section examines the effects of

discontinuous policy changes in distancing cost. Specifically, we consider a time-varying

policy variable ℓ(t) ∈ [c/c0, 1] with at most finitely many discontinuities such that

ci(t) = c0 · ℓ(t) ∈ [c, c0], (9)

where ℓ(t) can be interpreted as the strictness of the policy intervention at time t. While

the analysis to follow is cleanest with discontinuous changes, the results do not rely as

much on the discontinuity as they do on sudden rapid changes in the cost of distanc-

ing. Also, we focus on policy interventions that encourage social distancing behavior by

reducing the distancing cost. However, introducing periods of increased distancing cost

(i.e., holidays) can be straightforwardly implemented as well by allowing the distancing

cost to increase.

We start with introducing a useful technical tool to determine whether a policy change

will lead to a second wave. In particular, we characterize the threshold on the distancing

cost c(t) such that if c(t) is above the threshold c(t), the slope of prevalence is positive,

and if c(t) is below the threshold c(t), the slope of prevalence is negative. The difference

between the threshold and the actual distancing cost c(t) is the largest instantaneous

change in c(t) that will not change the sign of the slope of I(t).

Definition 2. Let c be a piece-wise continuously-differentiable distancing cost function

and let (S, I, R, c, ε) be the corresponding equilibrium.14 We define the threshold dis-

tancing cost function c as follows: for each t ≥ 0,

c(t) :=


β2I(t)S(t)η
βS(t)−γ

, if S(t) > γ
β

∞, if S(t) ≤ γ
β

.

With this definition in mind:

Proposition 3. Let c be a piece-wise continuously-differentiable distancing cost function,

and let c be the associated threshold distancing cost function. For any t > 0 and piece-

wise continuously-differentiable distancing cost function c2 such that the corresponding

equilibrium (S2, I2, R2, c2, ε2) satisfies the property that c2(s) = c(s) for all s < t, the

14Note that (S, I,R) are continuous functions satisfying (3), (4) and (5) with the initial condition
(S(0), I(0), R(0)) = (S0, I0, 0), where ε is the average exposure that satisfies (6). The equilibrium is
unique and symmetric.
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following holds:

İ2(t+) := lim
τ↓t

İ2(τ) < 0 if and only if c2(t) < c(t).

In words, the threshold distancing cost function c satisfies the following property.

Fix a distancing cost function c and its implied equilibrium, and consider an alternative

distancing cost function c2 that coincides with c up to time t. Then, c(t) prescribes the

largest value that the distancing cost c2(t) can take on such that the right-limit of the

derivative of I(t) under c2(t) is negative.
15

Whenever c is such that I is single-peaked in equilibrium, the threshold distancing-

cost function c intersects c once and from below. In particular, as long as İ(t) > 0,

c(t) < c(t) and conversely so if İ(t) > 0. In addition, when S(t) approaches γ
β
from

above, c(t) grows towards infinity.

The difference c− c plays an important role. When the prevalence is decreasing, the

cost difference informs by how much the cost can instantaneously increase without the

prevalence starting to increase. Conversely, when the prevalence is already increasing,

the difference c− c establishes by how much the cost of distancing must decrease for the

prevalence to start falling. This is of particular interest to policymakers who are trying to

establish the strictness of public health policies required to reduce the prevalence immedi-

ately. Conversely, it can be used to establish whether lifting a policy will lead to a second

wave. Hatchett et al. (2007), Bootsma and Ferguson (2007), and Caley et al. (2008)

suggest that, during the 1918 influenza pandemic, relaxations in non-pharmaceutical in-

terventions caused a new surge of cases.

We consider the introduction of a temporary lockdown and show how the threshold

function c can guide policymakers.

Example 1. We consider the introduction of a social-distancing policy. Letting the

baseline distancing cost be c(t) = c0 = 2, the dashed curve in the left panel of Figure

1 shows by how much the distancing cost c must be reduced to decrease the prevalence

before it would reach its peak otherwise.16 The threshold cost c(t) is 1.8 around day

15 and the peak prevalence is attained on day 35. Suppose that the social-distancing

measure ℓ(t) = 0.9, which decreases distancing cost to c(t) = 1.8, is introduced on day

30.

15Note that c depends on the equilibrium path (S, I,R, c, ε) under the distancing cost function c.
16We choose the model parameters (β, γ, I0, η, c0) based on the parameters calibrated in Carnehl,

Fukuda, and Kos (2023), where c0 = 2 is a normalization.
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Figure 1: Social-Distancing Policy. The left panel depicts the threshold distancing cost
function c over time. The central panel depicts the exposure level ε over time. The right
panel depicts the prevalence I over time.

The solid curve in the left panel in Figure 1 gives a new threshold distancing cost

function c when the distancing cost function satisfies c(t) = 1.8 for t ≥ 30. After the

introduction of the social-distancing measure, the prevalence decreases, and the new

threshold c endogenously decreases as well. The figure shows that on day 50, the threshold

cost is close to (but above) the current distancing cost.

To understand the new threshold distancing cost function, consider how individuals

respond to the social-distancing measure. As the central panel of Figure 1 shows, in-

dividuals best respond to the policy measure by decreasing their exposure levels. The

resulting increase in distancing lowers prevalence, which leads to a feedback effect of in-

creasing exposure. The prevalence nevertheless continues to decrease albeit at a slower

pace due to the individuals’ responses, as illustrated in the right panel of the figure.

After day 50, virtually any easing of the social-distancing measure causes the second

wave. For instance, if the distancing measure is lifted in its entirety after two months (i.e.,

on day 90), the infection resurges, and around day 111, the prevalence almost coincides

with the case in which no distancing measure is introduced, as depicted in the right panel

of Figure 1.17

5 Numerical Analysis of Public Policies with Dis-

tancing Fatigue

This section combines the two sources of time variation in the distancing cost—public

policies and distancing fatigue—and demonstrate that distancing fatigue can have adverse

17A vaccination campaign (i.e., a reduction in S) during a lockdown helps prevent the resurgence of
the infection. All else being equal, a reduction in S(t) increases the threshold distancing cost c(t) as
∂c(t)
∂S(t) = − β2ηγI(t)

(βS(t)−γ)2 < 0.
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effects on a well-intended public policy.

We simulate our model on the basis of numbers motivated by China’s strict COVID-19

lockdown and show that a strict lockdown from the outset of the epidemic may increase

both the final number of infected individuals and the peak of the prevalence in the second

wave arising upon the lifting of the lockdown. The reason is that a lockdown imposed at

the beginning of the epidemic, that does not completely eradicate the infection, effectively

postpones the spread of the disease until the lifting of the lockdown. At that point,

individuals are fatigued and thus reluctant to distance as much as they would have in the

absence of the lockdown.

While the analysis based on China’s lockdown below is relatively extreme in terms of

the strictness and duration of the policy as well as the calibrated fatigue parameters, the

insights are more general. Similar qualitative patterns arise from more moderate fatigue

parameters and shorter, less strict policies.

Example 2. To illustrate the interaction between fatigue and public policy, we ap-

proximate China’s COVID-19 lockdown within our model. We choose the parameters

(β, γ, I0, η, c0) based on the ones calibrated in Carnehl, Fukuda, and Kos (2023). We

impose a lockdown in the model starting ten days after the epidemic’s start. To focus on

the effect of distancing fatigue during the lockdown, we assume that individuals’ distanc-

ing cost is constant before the lockdown is imposed and follows equation (7) afterwards.

For simplicity, we assume that the lockdown lasts for 365 days. The lockdown induces a

75% reduction in social activity in line with the empirical findings in Zhong et al. (2022),

who find a 74.1-80% reduction in mobility in China.18 To obtain reasonable distancing

fatigue parameters (k, r) for equation (7), we choose the fatigue parameters such that

the model-predicted peak after the lifting of the lockdown would match the peak of the

second wave observed in China. We chose k = 0.02η and r = 0.01.

The left panel of Figure 2 depicts the prevalence curves under no lockdown policy

(dashed) and under the lockdown policy (solid). The prevalence peaks on day 442, ap-

proximately two months after the policy is lifted. At the peak, around 27% of individuals

are infected. Our simulations show that, at that point, approximately two thirds of the

population has been infected.19

To understand the role played by the strict lockdown interacting with distancing

fatigue, note that the non-behavioral SIR model, which provides an upper bound for the

18A time-varying lockdown policy ℓ(t) can implement a desired, constant reduction in social activity.
19This is not far away from the statement made by the chief epidemiologist of China’s Center for

Disease Control and Prevention that the “epidemic has already infected about 80% of the people”
in China as of January 21, 2023 (https://edition.cnn.com/2023/01/22/china/china-covid-80-lunar-new-
year-intl-hnk/index.html).
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Figure 2: Lockdown Policy. The left panel depicts the prevalence curves with (blue solid
curve) and without (red dashed curved) the lockdown on a logarithmic scale. The central
panel depicts the total number of infections (1 − S∞) as a function of the lockdown
duration. The right panel depicts the peak prevalence as a function of the lockdown
duration.

model studied here, predicts the peak prevalence at roughly 31%.20 In a behavioral SIR

model without distancing fatigue, the peak prevalence would be at about 0.1%. Hence,

it seems that in a model with both distancing fatigue and a long and strict lockdown the

benefits of voluntary social distancing are almost entirely removed.

We can quantify the contribution of the prolonged lockdown on the peak prevalence

by considering the situation in which the lockdown is not implemented but individuals

still accumulate fatigue. In this case, the peak prevalence would be at about 15% (see

the right panel of Figure 2). Thus, while fatigue alone accounts for an increase of the

peak prevalence from 0.1% to 15%, the prolonged lockdown accounts for an additional

increase of the peak prevalence from 15% to 27%, suggesting that the contribution of the

prolonged lockdown is substantial.

The central panel of Figure 2 depicts the total number of infections 1 − S∞ and

the prevalence at the second peak as a function of the lockdown duration. To see the

robustness of the qualitative features of these two measures, we consider three different

fatigue accumulation rates k ∈ {0.02η, 0.01η, 0.005η}. The other model parameters are

fixed. It is striking to see that both the total number of infections 1− S∞ and the peak

prevalence are lowest without any lockdown—they are initially increasing in the lockdown

20A strict, long lockdown leads to high levels of fatigue and thus a high distancing cost upon lifting
the lockdown. When βη/c(t) ≈ 0, the disease dynamics after the lockdown can be well approximated
by the standard non-behavioral SIR model with the post-lockdown initial condition (S∗, I∗) as the share
of susceptible individuals is still high as the lockdown was imposed early in the epidemic. This model
predicts a peak prevalence of

I =
γ

β
log

(
γ

β

)
− γ

β
− γ

β
log(S∗) + S∗ + I∗

(see, for instance, Brauer and Castillo-Chavez, 2012). This gives the prevalence of the second peak at
31% as opposed to 27% in our example.
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duration. After a certain threshold duration of the lockdown, we observe that while a

policy-maker may have preferred to impose a shorter or no lockdown at all, the size of the

epidemic and the second peak prevalence can be reduced only by keeping the lockdown

in place for an extended period of time.21

This example illustrates the important trade-off between breaking an initial wave

of an epidemic with a strict lockdown policy and the cost of lifting the lockdown after

individuals have accumulated substantial levels of distancing fatigue.

6 Public Policies as Time-Varying Distancing Cost

In this section, we illustrate how our model with a time-varying cost of distancing can

inform policy-making about the optimal path of public policy restrictions to implement

a target level of a time-varying transmission rate. Several papers have analyzed optimal

mitigation policies in a reduced form by assuming that a planner controls the path of

the disease.22 That is, they assume that a planner directly controls the time-varying

transmission rate, β(t), or social interactions, ε(t). Both cases can be viewed as a planner

controlling an effective transmission rate β̃(t) = β(t)ε(t), in which either β(t) is controlled

and ε(t) is constant or in which β is constant and ε(t) is controlled.

While mask mandates can directly affect the transmission rate, the attainable levels of

the transmission rate are limited by such a policy alone. Many countries have introduced

additional policies beyond mask mandates to reduce transmission during the COVID-19

pandemic. Such policies aim at reducing the spread of the infection via reduced social

interactions, such as bar and restaurant closures. However, to understand the effect of

such policies, which affect the individuals’ incentives to socially distance, behavior should

be modeled explicitly because they are only effective through individuals’ endogenous

choices, which, in turn, depend on the current state of the epidemic.23

Nevertheless, the results obtained in these papers are important to understand the

desirable epidemic paths of a planner who optimizes subject to macroeconomic or other

cost considerations. These papers typically model behavior only in reduced form through

21Note, however, that in these simulations, we do not impose any direct lockdown cost and only
consider relatively early starting dates of the lockdown.

22See, for example, Acemoglu et al. (2021), Alvarez, Argente, and Lippi (2021), Farboodi, Jarosch,
and Shimer (2021), Chakrabarti et al. (2022), and Kruse and Strack (2022).

23Carnehl, Fukuda, and Kos (2023) show that policies that affect distancing incentives via reductions
in the transmission rate and changes in the cost of distancing have qualitatively different effects on the
path of an epidemic.
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a time varying effective transmission rate β̃(t), which a planner controls. We show how

our equilibrium distancing model with a time-varying cost can be used to back out a policy

path that affects the cost directly, c(t), to induce the effective reduced-form transmission

rate β̃(t). That is, given a path β̃(t), we derive the time-varying cost function c(t) that

can implement it, taking endogenous behavioral responses to both the disease and the

policies into account.

Consider a desirable time-varying transmission rate β̃(t) for given primitives of the

non-behavioral SIR model (i.e., β, γ, I0, and S0 = 1− I0). The dynamics of the disease

under the desirable transmission rate function β̃ follows the system of equations (3),

(4), and (5) where βε(t) is replaced by β̃(t). Then, we can use our model to solve for

the time-varying distancing cost function c̃ implementing the transmission rate function

β̃(t) = βε(t) via

c̃(t) :=
β2ηI(t)

β − β̃(t)
,

provided β̃(t) < β. Recalling equation (9), without distancing fatigue, the required

lockdown severeness ℓ̃(t) follows

ℓ̃(t) :=
β2ηI(t)

c0(β − β̃(t))
.

However, using equation (7), we can straightforwardly also incorporate distancing

fatigue φ(t) to obtain:

ℓ̃φ(t) :=
1

c0

(
β2ηI(t)

β − β̃(t)
− φ(t)

)
.

It should be noted that there is an endogenous upper bound on the implementable

β̃(t), which derives from individuals’ endogenous distancing without policy interventions.

Unless meetings can be subsidized during an epidemic, that is, more exposure encouraged

than individuals would voluntarily engage in, β̃(t) > β cannot be attained.

An important observation is that the strictness of the policies in place depends not

only on the transmission rate to be implemented but also on current prevalence I(t),

fatigue φ(t), and the cost of infection η. If the prevalence or the cost of infection is high

or if fatigue is low, policies do not have to be as strict to induce a certain transmission rate

as otherwise. This suggests that in models studying the optimal control of a transmission

rate during an epidemic, the cost function of reducing the transmission rate should at least
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depend on the current prevalence to take endogenous distancing decisions into account.24

Finally, an analogous approach is feasible to implement desired levels of the effective

reproduction number Re(t) which measures how many secondary infections are caused

by each infected individual.25 Whenever Re(t) > (<)1, the prevalence is increasing (de-

creasing). For example, Budish (2020) considers Re(t) ≤ 1 as a constraint for a planner

without an explicit dynamic equilibrium model. In our setting, this constraint corre-

sponds to the current policy satisfying the constraint that c(t) ≤ c(t) as in Proposition

3.

7 Conclusion

This paper introduces a behavioral SIR model with time-varying distancing costs by fo-

cusing on two main applications: distancing fatigue and public policies. We incorporate

endogenously evolving distancing fatigue into a behavioral SIR model by assuming that

individuals’ distancing costs increase in their past distancing. We show that distancing

fatigue alone cannot cause a second wave of infection. For a second wave to arise, the

distancing cost has to increase rapidly after the first peak. Distancing fatigue postpones

the time at which prevalence peaks and raises the level of peak prevalence. Thus, dis-

tancing fatigue may have substantial consequences for the medical system even though

the prevalence remains single-peaked.

While distancing fatigue alone does not cause a second wave, changes in public policies

can. In particular, the removal of a mitigation policy can induce a sufficient increase in

the distancing cost for a second wave to arise. Thus, policymakers must consider the con-

sequences of changes in public policies through behavioral responses carefully. To guide

such considerations, we formulate a threshold distancing cost function. If individuals’

distancing costs remain below the threshold then the prevalence does not increase.

Finally, we examine the interplay of lockdown policies and distancing fatigue. Cru-

cially, distancing fatigue imposes a negative dynamic spillover on lockdowns. The policy

that curtails mobility in the current period reduces distancing incentives in the future

via two channels: i) lower prevalence and ii) accumulated distancing fatigue. Holding

lockdown stringency fixed, distancing fatigue reduces lockdown effectiveness over time,

24The distancing cost function c̃ can be interpreted as the ratio between the marginal benefit of

distancing βI(t)η (relative to c0) and the reduction of the transmission rate β−β̃(t)
β .

25In the non-behavioral SIR model, the effective reproduction number is given by β
γS(t). In our

behavioral SIR model, the effective reproduction number is given by βε(t)
γ S(t).
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and increases the prevalence level of a second wave should the lockdown be lifted. Con-

sequently, a current lockdown decreases the effectiveness of any future lockdown policies.

In addition, we demonstrate that longer lockdowns can cause higher prevalence levels in

the second wave—even exceeding the prevalence levels without any lockdown at all.
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A Proofs

Proof of Proposition 1. At each time t, an individual’s problem (2) is concave. Thus,

the first-order condition is sufficient. This pins down the individual’s optimal distancing

in the SIR dynamics. By the arguments in the main text, an equilibrium is symmetric.

Using the exposure obtained from (6) in the SIR dynamics together with the cost-function

evolution yields

Ṡ(t) = −βS(t)I(t)max

(
1− ηβI(t)

c(t)
, 0

)
, (10)

İ(t) = βS(t)I(t)max

(
1− ηβI(t)

c(t)
, 0

)
− γI(t), (11)

Ṙ(t) = γI(t), (12)

ċ(t) = F

(
t, c(t),max

(
1− ηβI(t)

c(t)
, 0

))
, (13)

for all but possibly a finite number of t, at which at least one of the variables (S, I, R, c)

is not differentiable. Let t1 < · · · < tN be the set of these points (this set may possibly

be empty). Let tN+1 = ∞.

Thus, in any equilibrium, (S, I, R, c) is characterized by the system of differential equa-

tions d
dt
(S, I, R, c) = G(t, S, I, R, c), where G is defined by (10), (11), (12), and (13). The

initial condition is (S(0), I(0), R(0), c(0)) = (S0, I0, 0, c0). Then, the initial value prob-

lem admits a unique solution (S, I, R, c) on [0, t1), as the system satisfies the conditions

of the Picard-Lindelöf Theorem. Namely, the function G is continuous on the domain

D = [0, t1)× [0, 1]3× [c,∞), and G is uniformly Lipschitz continuous in (S, I, R, c): there

exists a Lipschitz constant L satisfying ∥G(t, S, I, R, c)−G(t, S̃, Ĩ , R̃, c̃)∥ ≤ L∥(S, I, R, c)−
(S̃, Ĩ , R̃, c̃)∥ for each t ∈ [0, t1). See, for example, Walter (1998). Since the equilibrium

definition requires S, I and R to be continuous, we apply the same logic to the interval

[t1, t2) with the initial value (S(t1), I(t1), R(t1)) = lim
t↑t1

(S(t), I(t), R(t)) and all the subse-

quent intervals. Note that each c(tn) is also given. Now, ε = εi is uniquely determined,

and hence the model admits a unique and symmetric equilibrium.

Next, we show lim
t→∞

I(t) = 0. Since R(·) ∈ [0, 1] is weakly increasing, lim
t→∞

R(∞) exists

in [0, 1]. By equation (12), we must have 0 = lim
t→∞

Ṙ(t) = γ lim
t→∞

I(t), establishing I∞ = 0.

Next, lim
t→∞

ε(t) = 1 follows from taking the limit of (6) because the distancing cost is

bounded from below, c(t) ≥ c, and lim
t→∞

I(t) = 0.

Finally, having established lim
t→∞

I(t) = 0 and lim
t→∞

ε(t) = 1, one can show S∞ ∈
(
0, γ

β

)
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as in the proof of Lemma 3 in Carnehl, Fukuda, and Kos (2023).

Before proving Proposition 2, we provide three lemmas on which we will build and

which can be of independent interest. The first lemma provides a sufficient condition on

the time-varying cost function to have a single-peaked prevalence. The second lemma

shows that if the exposure level is positive at some point in time, it remains positive

in the future. The third lemma shows that in our model with distancing fatigue, the

distancing cost can attain a local maximum only while the prevalence is decreasing.

Lemma 1. Let c be a continuously differentiable function such that ċ is given by (1) for

all t > 0. If
ċ(t)

c2(t)
<

ε2(t)

η
for all t > 0, (14)

then, in equilibrium, prevalence I has a single peak.

Proof. To have at least two peaks, there must be two local strict maxima of I at t2 > t1 ≥
0. Because I is continuous it has a minimum on [t1, t2] by the extreme-value theorem.

Moreover, since t1 and t2 are local strict maxima, the minimum has to be attained at

some t̂ ∈ (t1, t2). The fact that in equilibrium S, I and R are continuous implies that I

is differentiable and that its derivative is given by (4).

As I has a local minimum at t̂, İ(t̂) = 0 and thus βε(t̂)S(t̂) = γ. It follows that

ε(t) = 1 − βηI(t)
c(t)

> 0 and S(t) > 0 in the neighborhood of t̂. Therefore, evaluating Ï(t)

with İ(t) = 0 yields

Ï(t)
∣∣∣
İ(t)=0

= βI(t)(ε̇(t)S(t) + ε(t)Ṡ(t)). (15)

Substituting

ε̇(t) =
−βηI(t)

c(t)

(
İ(t)

I(t)
− ċ(t)

c(t)

)
and Ṡ(t) = −βε(t)I(t)S(t)

into (15) results in

Ï(t)
∣∣∣
İ(t)=0

= β2ηI2(t)S(t)

(
ċ(t)

c2(t)
− ε2(t)

η

)
. (16)

For no interior minimum to exist it is sufficient to show that Ï(t)|İ(t)=0 < 0 for all

t > 0, which occurs precisely when (14) holds.

Lemma 2. In equilibrium, if ε(t′) > 0 for some t′, then ε(t) > 0 for all t ≥ t′.
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Proof. Suppose, to the contrary, that individuals choose ε(t) = 0 for some t > t′, and let

t := inf{t ≥ t′ | ε(t) = 0}. Since I and c are continuous in equilibrium, so is ε. Thus,

ε(t) = 0 and consequently t > t′. Towards the contradiction we will argue that in any

small enough left neighborhood of t, ε̇(t) > 0.

At any t where ε(t) > 0, ε is differentiable with derivative

ε̇(t) = (1− ε(t))

(
ċ(t)

c(t)
− İ(t)

I(t)

)
. (17)

In addition, ε(t) > 0 on (t, t′) implies

c(t)− c0 = k

∫ t

0

e−r(t−τ)(1− ε(τ))dτ

< k

∫ t

0

e−r(t−τ)dτ

<
k

r
.

Since I and c are continuous in equilibrium, for any δ1 > 0, there exists δ2 > 0 such that

ε(t) < δ1 if t ∈ (t − δ2, t]. But then, given that c(t) − c0 < k
r
, δ1 can be chosen small

enough so that r(c(t) − c0) < k(1 − ε(t)). In other words, for δ2 small enough, ċ(t) > 0

for t ∈ (t− δ2, t). Moreover, equation (4) implies that İ < 0 whenever ε < γ
β
. Therefore,

δ1 can be chosen so that ċ(t) > 0 and İ(t) < 0. Consequently, due to (17), ε̇(t) > 0 on

(t − δ1, t). But this means that, whenever ε(t) becomes very small, it starts increasing

and thus cannot reach 0.

Lemma 3. Suppose c is given by (7) and İ(0) > 0. In equilibrium, if c attains a local

maximum (minimum) at t > 0, then İ(t) ≤ 0 (≥ 0).

Proof. As İ(0) > 0, it must be the case that ε(0) > 0. By Lemma 2, ε(t) > 0 for all

t ≥ 0. By implication ε and therefore ċ are differentiable for all t > 0.

Suppose c attains a critical point at some t. Thus, ċ(t) = 0. Differentiating (8) and

evaluating it at ċ(t) = 0 yields

c̈(t)|ċ(t)=0 = −kε̇(t) = k
βηİ(t)

c(t)
.

Thus, if c attains a local maximum (minimum) at t, it is necessary that İ(t) ≤ 0 (≥ 0).

Proof of Proposition 2. We first prove the first part of the proposition. Since İ(0) > 0
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and I∞ = 0, it follows that I peaks at least once. In addition, İ(0) > 0 implies ε(0) > 0

and thus by Lemma 2, ε(t) > 0 for all t > 0. As a consequence, İ(·) is differentiable.

Let t1 be some t at which a local maximum of I is attained. Thus, İ(t1) = 0 and

Ï(t1) ≤ 0. Then by (16) in the proof of Lemma 1, it must be the case that

ċ(t1)

c2(t1)
≤ ε2(t1)

η
.

Let t2 be the smallest t > t1 such that İ(t) = 0 and Ï(t) ≥ 0. If it exists, t2 is the first

local minimum after t1. If there is no local minimum after the first local maximum, our

result is proven.

We consider two cases. First, suppose c(t2) ≥ c(t1). Then:

ċ(t2) = k(1− ε(t2))− r(c(t2)− c0)

< k(1− ε(t1))− r(c(t1)− c0)

= ċ(t1),

where the inequality follows from the fact that at any t such that İ(t) = 0, ε(t) =

γ/(βS(t)) and that S(t) is decreasing. As a consequence,

ċ(t2)

c2(t2)
<

ċ(t1)

c2(t1)
≤ ε2(t1)

η
<

ε2(t2)

η
,

which, due to equality (16) in the proof of Lemma 1, contradicts the assumption that

İ(t2) = 0 and Ï(t2) ≥ 0.

Second, suppose c(t2) < c(t1). By the definition of t2, I(t1) > I(t2) and I is decreasing

on [t1, t2]. Since c is continuous on [t1, t2], it attains a maximum and minimum on the

interval by the extreme value theorem. Lemma 3 implies that if c attains an interior

extremum, then it has to be a local maximum. Alternatively, c is decreasing on the whole

interval. In either case ċ(t2) ≤ 0. But then the inequality ċ(t2)
c2(t2)

< ε2(t2)
η

is automatically

satisfied and thus Ï(t2) < 0, which contradicts the supposition.

Thus, there does not exist a time t2 ∈ (t1,∞) such that İ(t2) = 0 and Ï(t2) ≥ 0.

Proof of Proposition 3. Take c, t, and c2 as in the statement of the proposition. Sup-

pose that c2(t) = c(t). Let (S2, I2, R2, c2, ε2) be the equilibrium under c2. By the definition

of the equilibrium, S2 and I2 are continuous. Notice that S2 and I2 coincide with S and

I on [0, t].
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If c2 has any discontinuities at some τ > t, let t′ be smallest τ > t where c2 is

discontinuous; otherwise set t′ = ∞. Since S2 and I2 are continuous, it follows from (3)

and (4) that Ṡ2 and İ2 exist and are continuous on (t, t′). Notice that

βε2(t)S2(t)− γ = 0.

By continuity of ε2 and S2 for every δ1 > 0 there exists a δ2 > 0 such that |ε2(t)S2(t)−
ε2(s)S2(s)| < δ1 for all s such that |s− t| < δ2. Consequently,

İ2(τ) = I2(τ)(βε2(τ)S2(τ)− γ)

< I2(τ)(βε2(t)S2(t) + δ1 − γ)

= δ1I2(τ),

for all τ ∈ (t, t + δ2). Therefore the right limit of İ2(τ) at t is 0. It is then easy to see

that if c2(t) < c(t) the derivative of I2 would be smaller than 0.

B Far-sighted Decision-Making

We present a model with far-sighted decision-making, and provide numerical support for

our main insights. Hence, the assumption of myopic decision-making is not the main

driver of our findings.

As before, the individuals at each point in time decide the level of distancing, which

determines the likelihood of infection. An individual’s flow payoff from being in state

θ ∈ {S, I, R} is πθ. We assume πS ≥ πR ≥ πI .
26 The individual discounts the future at

rate ρ > 0.

A susceptible individual i with exposure εi(t) enjoys the instantaneous payoff πS −
ci(t)
2
(1 − εi(t))

2. For ease of exposition, here we suppose that ċi(t) does not depend on

the current distancing 1 − εi(t) in (1), i.e., we suppose that the susceptible individual

i takes the distancing cost function ci as given when she decides her exposure. This is

because the main insight that the effectiveness of future mitigation-policies decline after

introducing a current policy holds under no distancing fatigue.27

26Models with endogenous cost of infection have been presented in Reluga (2010), Fenichel et al. (2011),
Fenichel (2013), Toxvaerd (2020), McAdams, Song, and Zou (2023), among others. Yet, analytical
characterizations of equilibria even with constant distancing cost are rather elusive.

27As the analysis of distancing fatigue introduces an additional state variable and thus is complicated
for far-sighted individuals, we focus on the case in which each individual takes ci as exogenously given.
Our numerical analyses confirm that our main insights carry over to far-sighted individuals. In fact, this
shows an additional advantage of our myopic model when it comes to adding distancing fatigue.
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Let 1 − pi(t) be the probability of being susceptible at time t and, conversely, pi(t)

the probability that an individual has become infected in the past. Then, ṗi(t) represents

the rate at which susceptible individuals become infected

ṗi(t) = εi(t)βI(t)(1− pi(t)),

with pi(0) = 0. Since we model the behavior of susceptible individuals, the probability

that they are infected at the outset is zero. Once an individual gets infected, her pro-

gression to recovery is independent of her behavior. Her continuation payoff from the

moment she became infected is VI =
1

ρ+γ

(
πI +

γ
ρ
πR

)
.28

A susceptible individual who faces average exposure ε from her peers solves the prob-

lem

max
εi(·)∈[0,1]

∫ ∞

0

e−ρt

{
(1− pi(t))[πS − ci(t)

2
(1− εi(t))

2] + pi(t)ρVI

}
dt (18)

s.t.

ṗi(t) = βεi(t)I(t)(1− pi(t)),

pi(0) = 0,

the underlying SIR dynamics given by equations (3), (4) and (5) with the initial condition

(S(0), I(0), R(0)) = (1 − I0, I0, 0) and I0 ∈ (0, 1), and the distancing cost function ci

satisfying (1), where di = 1− εi with ci(0) = c0.
29 The individual’s payoff can be thought

of as the expected value of being susceptible or infected at each point in time where the

flow payoff of an infected individual is ρVI .

We restrict attention to distancing cost functions ci which satisfy

πS − sup
t∈[0,∞)

ci(t)

2
> ρVI . (19)

This assumption states that even if a susceptible individual is fully distancing, her flow

payoff of being suceptible is greater than the flow payoff of being infected.

An equilibrium (S, I, R, c, ε, p) of the far-sighted decision-making model is defined

analogously to our main model. Note that, in equilibrium, each pi is determined by ε,

I, and c, and thus p = pi for each i. The cost of infection η = ηi, which is the co-state

variable associated with the individual problem, changes over time. While (S, I, R, c)

28See Carnehl, Fukuda, and Kos (2023, Remark 1) for the formal derivation of VI .
29Note that here we suppose that the individual i treats ci as given. When ċi depends on 1− εi(t), we

need to incorporate the law of motion for ci into the problem. Again, our assumption makes it easier to
analyze the time-varying distancing costs for far-sighted individuals.
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is solved forward, η is solved backward. Hence, analytically characterizing the set of

equilibria is untenable.

To characterize the forward-looking variable η, we set up the current-value Hamilto-

nian of problem (18):

Hi = (1− pi(t))[πS − ci(t)

2
(1− εi(t))

2] + pi(t)ρVI − ηi(t)βεi(t)I(t)(1− pi(t)),

where ηi(t) is the current-value co-state variable. It represents the marginal cost of an

increase in the probability of being infected at time t. The optimality condition with

respect to exposure εi(t) at time t is

∂Hi

∂εi(t)
= (1− pi(t))[ci(t)(1− εi(t))− βηi(t)I(t)] = 0.

Thus, the optimality condition delivers equilibrium distancing

di(t) =
βηi(t)I(t)

ci(t)
, (20)

provided that the entire distancing path admits an interior solution, i.e., that di(t) ∈ [0, 1]

for all t. One should keep in mind that the marginal cost of an increased probability of

infection, ηi(t), is positive due to the assumption given by (19). The current-value co-state

variable ηi follows the adjoint equation

η̇i(t) = ρηi(t) +
∂Hi

∂pi(t)

= ηi(t) (ρ+ εi(t)βI(t)) +

(
πS − ci(t)

2
(1− εi(t))

2 − ρVI

)
.

The transversality condition is lim
t→∞

e−ρtηi(t) = 0. In equilibrium, η = ηi for all i.

Using the adjoint equation and the transversality condition, we can solve for η.

Lemma 4. Suppose that the rest of the population is following the strategy ε, and εi is

the individual i’s best response. Then

ηi(t) =

∫ ∞

t

e−ρ(s−t)1− pi(s)

1− pi(t)

(
πS − ci(t)

2
(1− εi(s))

2 − ρVI

)
ds.

Let (S, I, R, ε, p) be an equilibrium. Then

η(t) =

∫ ∞

t

e−ρ(s−t)S(s)

S(t)

(
πS − c(s)

2
(1− ε(s))2 − ρVI

)
ds.
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The proof of this lemma is similar to that of Carnehl, Fukuda, and Kos (2023, Lemma

2), and thus it is omitted. Instead, we provide the interpretation of the lemma. We term

πS − c(t)
2
(1− ε(t))2 − ρVI the susceptibility premium at time t. It is the difference in flow

payoffs between being susceptible and being infected. The cost of getting infected, η(t), is

the discounted value of the susceptibility premium over time weighted by the conditional

probability of being susceptible at each time in the future, s ≥ t, S(s)
S(t)

. Distancing over a

period of time reduces the quality of life and, thus, the susceptibility premium. However,

it also decreases the probability that the individual will get infected and rewards her with

the premium for a longer period of time.

As in Carnehl, Fukuda, and Kos (2023, Lemma 3), one can also show that η is

bounded. Letting (S, I, R, c, ε, p) be an equilibrium,

πS − ρVI − c(t)
2

ρ+ β
≤ η(t) ≤ πS − ρVI

ρ
and lim

t→∞
η(t) =

πS − ρVI

ρ
.

As time passes, η eventually converges to the upper bound, which is attained when indi-

viduals choose full exposure in perpetuity without facing any risk of becoming infected.

This is the case in which getting infected would be most costly as there is no need to

distance and no risk of future infection. The convergence to this bound is intuitive, be-

cause the disease dies out and obviates the need for distancing in the limit as time goes

to infinity.

Below, we present the results of our numerical simulations with endogenous η. We

calibrate the parameters for the beginning of COVID-19. The value of η in the main

text corresponds to the upper bound η = πS−ρVI

ρ
.30 For the values of πS, ρ, and VI , see

Carnehl, Fukuda, and Kos (2023).

Specifically, we revisit Example 1 with endogenous η. To that end, we define

c(t) :=


β2I(t)S(t)η(t)

βS(t)−γ
, if S(t) > γ

β

∞, if S(t) ≤ γ
β

.

Note that the only difference from the main text is that η is now time-varying. This is

because the exposure level of the far-sighted individual is ε(t) = 1 − βη(t)I(t)
c(t)

. One can

show that Proposition 3 holds under this setting, as the proof in Appendix A simply

extends to this case.

30Hence, by assumption, in our numerical simulations of the model in which η is fixed at the upper
bound, individuals engage distancing more and the prevalence is lower. In contrast, by taking the lower
bound of η, we can also bound the prevalence from above. This way, the model with constant infection
cost can also shed light on the dynamics of the model with endogenous infection cost.
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Figure 3: Social-Distancing Policy. The left panel depicts the threshold distancing cost
function c over time. The central panel depicts the exposure level ε over time. The right
panel depicts the prevalence I over time.

The left panel of Figure 3 illustrates the threshold distancing function c. Figure 3

look similar to Figure 1.

To sum up, while one might argue that individuals do not fully discount the future,

the difficulty in predicting the path of an epidemic might induce them to simply respond

to the current state of the epidemic. In addition, analytical results for the SIR model

with endogenous distancing by far-sighted individuals are few and far between.31 The

myopic model enables one to provide analytical insights and pave the road towards the

understanding of the model with far-sighted individuals. Moreover, our numerical analysis

highlights that assuming a fixed cost of infection is not the main driver of our findings.
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