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Abstract

This paper introduces an information correspondence, a model of interactive
beliefs that assigns multiple information sets to each state. This framework gen-
eralizes the possibility correspondence model, which assigns a unique information
set to each state. The information correspondence model allows for the analysis
of agents who fail to believe the conjunction of their own beliefs or a tautology.
It also provides a unified tractable representation for both qualitative and prob-
abilistic beliefs. The model’s only core assumption is logical monotonicity: an
agent believes any logical consequence of her beliefs. The paper characterizes log-
ical and introspective properties, as well as an agent’s belief in those properties.
The model also generalizes, in a mathematical sense, a knowledge representation
in mathematical psychology known as a surmise function. The paper bridges
seemingly different knowledge and belief representations in economics and math-
ematical psychology.
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1 Introduction

Representations of beliefs and knowledge have been studied across computer science,
economics, game theory, logic, philosophy, and psychology. This paper provides a
model of interactive beliefs and knowledge, which I call an information correspondence
model, with the following two aims. First, the information correspondence model
generalizes a possibility correspondence model in economics and game theory with
the following two features: (i) the model can relax some logical reasoning ability of
agents while keeping tractability; and (ii) the model can represent agents’ qualitative
and probabilistic beliefs under the same framework. Second, this paper bridges, in
a mathematical sense, seemingly different knowledge-belief representations between
economics and mathematical psychology.

Information Correspondences. An information correspondence model, as in a
possibility correspondence model (e.g., Aumann, 1976, 1999; Dekel and Gul, 1997;
Geanakoplos, 2021; Morris, 1996), has the following three ingredients. First, there is a
set Ω of states of the world. Each state ω ∈ Ω is supposed to be a complete description
of the world. Second, each agent reasons about some aspects of the underlying states
Ω. Each property of the state space is represented as an event, which is a subset E of
the state space Ω. Thus, the second ingredient is the collection of events, which deter-
mines the objects of agents’ beliefs. Third, each agent is endowed with her information
correspondence I, which associates, with each state, possibly multiple information sets
available at that state. The agent believes an event at a state if the event is implied by
some information set at that state. If the information correspondence assigns a single
information set at each state, then it reduces to the possibility correspondence (Propo-
sition 1 in Section 2.1 characterizes the condition under which that an information
correspondence reduces to a possibility correspondence).

An agent whose beliefs are represented by an information correspondence, unlike
a possibility correspondence, may fail to believe the conjunction of events that she
believes or a tautology (as shown in Example 1 in Section 2.2.1). The information
correspondence model is a tractable generalization of the possibility correspondence
model that dispenses with such logical sophistication. To obtain tractability, the only
requirement of the model is logical monotonicity: an agent believes logical consequences
of her own beliefs. The information correspondence approach, by assuming logical
monotonicity, enables the analysts to represent agents’ beliefs without specifying the
entire collection of events that an agent believes at each state.1

The relaxation of agents’ conjunction property technically allows the analysts to
study both qualitative and probabilistic beliefs under the umbrella of the informa-
tion correspondence approach (see Section 2.2.2). For example, in a dynamic game,
while agents have knowledge about past observations, they form probabilistic beliefs

1For the expert reader who is familiar with monotone neighborhood systems (which are to be dis-
cussed later), this feature distinguishes an information correspondence from a monotone neighborhood
system.

2



about their opponents’ future behaviors.2 If an agent exhibits the arbitrary conjunc-
tion property (i.e., she believes an arbitrary conjunction of her beliefs) rendered by
a possibility correspondence, such belief may not be an event (e.g., in a probabilistic
framework where the collection of events forms a σ-algebra, such belief may not be
measurable). Such arbitrary conjunction property may indeed be at odd with prob-
abilistic reasoning because, for example, the agent may not assign probability one to
the arbitrary conjunction of events that she believes with probability one. Thus, a
possibility correspondence model cannot necessarily represent probabilistic beliefs. In
contrast, the information correspondence approach can accommodate various forms of
monotone probabilistic beliefs such as countably-additive, finitely-additive, and even
non-additive beliefs. Section 5 studies an economic application in which an agent’s
beliefs are induced from her preferences. It provides an economic example of an in-
formation correspondence that cannot be captured by a possibility correspondence
(Proposition 7).

The paper characterizes logical and introspective properties of beliefs in terms of an
information correspondence (Propositions 2 and 3 in Sections 3.1 and 3.2). Since the
information correspondence dispenses with Necessitation (i.e., an agent always believes
a tautology), the paper also formulates the belief in a property (Proposition 4 in Section
3.3). For instance, Belief in Correct Belief states that the agent always believes that
her belief is correct (i.e., whenever she believes an event at a state, the event holds
true at that state) even if her belief may not always be correct.3

Recall that the only assumption that any information correspondence imposes is
logical monotonicity: if the agent believes an event E and if E implies an event F then
she believes F . Thus, for given logical and introspective properties of agents’ mono-
tone beliefs, I demonstrate the equivalence between the information correspondence
approach and the belief operator approach where an agent’s belief operator maps each
event E to the event that she believes E (Proposition 5 in Section 4.1).

Knowledge Representation in Mathematical Psychology. The second objec-
tive of this paper is to connect the information correspondence model to the knowl-
edge representation in mathematical psychology known as a “surmise system” in the
“knowledge space theory” developed by Doignon and Falmagne (1985, 1999, 2016) and
Falmagne and Doignon (2011).4 Knowledge is a special form of belief that satisfies the
truth axiom: if an agent “knows” an event at a state then the event holds at that state.

2See, for example, Dekel and Gul (1997) for the importance of capturing both knowledge and
probabilistic beliefs in dynamic games.

3The previous literature has shown that an interpersonal version of Belief in Correct Belief (agent
j believes that agent i’s beliefs are correct) plays an important role in the existence of common prior
and an epistemic characterization of backward induction as an implication of common knowledge of
rationality in a possibility correspondence model (e.g., Bonanno and Nehring, 1998a,b; Samet, 2013).

4Doignon and Falmagne (1985) is the pioneering paper on the subject. Since it is impossible to
cite the entire literature, I focus on citing surveys here. Doignon and Falmagne (2016) is a more recent
survey article. Doignon and Falmagne (1999) is the first survey book, while Falmagne and Doignon
(2011) is an enriched edition of it. See also the references therein and in Hockemeyer (2025).
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This paper aims to link seemingly different (for their respective aims) knowledge rep-
resentations in economics and mathematical psychology from a unified mathematical
point of view.5

To make the connection, I introduce a “surmise system” while keeping the same
notations. Since I give two different interpretations to each mathematical object, I at-
tach the quotation mark in referring to the mathematical-psychology literature.6 The
literature studies the knowledge of an agent (e.g., a high school student) regarding
subsets of Ω, which consists of “questions” or “items.” Thus, the ambient set Ω rep-
resents the entire body of knowledge in question (e.g., high-school algebra). While I
make the formal connection in the sequel, a “surmise function” is a mapping I which
associates, with each “question” ω, the collection of possibly multiple sets of “items”
with the following interpretation: each set of such “items” serves as a possible set of
prerequisites for the “question” ω. Thus, if the agent has mastered the “question” ω,
then she must have mastered all the “questions” in at least one of the members of
I(ω). Multiplicity of members of I(ω) means multiple ways to master the “question”
ω. Thus, the “surmise function” I encodes all possible (thus not necessarily unique)
ways to making inferences from each question.7 This paper shows that an agent’s belief
described by a “surmise function” is knowledge that exhibits positive introspection (if
she knows a set of “questions” then she knows that she knows it) and necessitation
(the agent knows a tautology).

The motivation behind bridging these two different knowledge and belief represen-
tations comes from the observation that the two knowledge models in economics and
mathematical psychology, which I demonstrate are firmly related, have evolved in quite
different ways. Hence, it would be interesting to connect these two seemingly different
knowledge and belief representations under the same mathematical framework.

On the one hand, one feature that is not seen in interactive epistemology in eco-
nomics and game theory is the development of empirical assessments of an agent’s
beliefs and knowledge based on the formal model. The mathematical psychology lit-
erature (see, Doignon and Falmagne (2016) and Falmagne and Doignon (2011) for
surveys) has been attempting at constructing and testing a formal knowledge repre-
sentation in practical contexts. A particular case of “knowledge space theory” referred
to as “learning space theory” has developed the assessments of students’ knowledge
about their academic subjects. For example, the web-based system called ALEKS

5Fukuda (2019) represents an agent’s truthful knowledge by a set algebra (a collection of events)
such as a σ-algebra or a topology in terms of the agent’s logical and introspective reasoning ability.
The set algebra, in a particular setting, turns out to correspond to the “knowledge states” in Doignon
and Falmagne (1985, 1999, 2016) and Falmagne and Doignon (2011).

6Table A.1 in Appendix A.1 summarizes the correspondence between the terminology mainly used
in this paper and that used in mathematical psychology.

7In light of inferences, Shin (1993) identifies the notion of knowledge with logical provability (in
the economics literature). An agent knows an event when she can prove it from her “basic knowledge”
through use of propositional logic. This paper allows for such an interpretation: an agent believes an
event E at a state ω if she can “prove” (in terms of set inclusion) E from one of her information sets
F ∈ I(ω) (which could be incorrect in that ω 6∈ F ).
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(“Assessment of LEarning in Knowledge Spaces”) has been used by “millions of stu-
dents in schools and colleges, and by home schooled students” (Doignon and Falmagne,
2016). See also Cosyn et al. (2021).

On the other hand, the economics literature has provided features that have not
been developed in mathematical psychology. Among others, one is the consideration
of interactive higher-order beliefs, i.e., an agent’s belief about other agents’ beliefs.
Another is unawareness. In one formulation, an agent is unaware of an event if she does
not know it and she does not know that she does not know it. In another formulation,
the agent is unaware of an event if she lacks the conception that determines the event.8

Other Related Literature. This paper is also closely related to knowledge and
belief representations referred to as monotone neighborhood systems in computer sci-
ence, logic, and philosophy (e.g., Chellas, 1980; Fagin et al., 2003; Pacuit, 2017) and
related models of limited reasoning in computer science. A neighborhood system (also
called a Montague-Scott structure) is a mapping that associates, with each state of the
world, the entire collection of events that an agent believes. A monotone neighborhood
system is a neighborhood system such that the agent’s belief is logically monotone (i.e.,
if the agent believes an event then she believes any of its logical consequences). An
information correspondence is a “generator” of a monotone neighborhood system, and
thus it can describe an agent’s beliefs without specifying the entire collection of events
that she believes at each state. A monotone neighborhood system itself is considered
to be an information correspondence.

In economics and game theory, such papers as Heifetz (1996, 1999) and Lismont
and Mongin (1994a,b) use monotone neighborhood systems to represent notions of
common belief and common knowledge (e.g., Aumann, 1976; Friedell, 1969). This pa-
per instead formalizes logical and introspective properties of individual agents’ beliefs
and knowledge. I also briefly discuss how to introduce notions of common belief and
common knowledge into the framework of this paper. Salonen (2009a) studies a canon-
ical syntactical interactive belief representation by capturing each agent’s beliefs as a
collection of propositions that she believes.

Monotone neighborhood systems and models of limited reasoning have been stud-
ied in computer science, logic, and philosophy. The closest paper in this literature is
the logic of local reasoning (or the “society-of-minds”) approach by Fagin and Halpern
(1987).9 They study a “boundedly rational” agent who fails to believe (or know) the
conjunctions of her own belief (or knowledge). The agent is endowed with a collec-
tion of multiple information sets at each state, and she focuses on one information set

8Pioneering papers on unawareness include Fagin and Halpern (1987) and Modica and Rustichini
(1994, 1999). Some recent models that formalize unawareness as a lack of concepts include Heifetz,
Meier, and Schipper (2006, 2013). See Schipper (2015) for a survey. Whether unawareness is formal-
ized as a lack of knowledge or a lack of concepts, it may offer novel insights into the assessments of
one’s knowledge in mathematical psychology.

9Thijsse (1993) (see also Thijsse, 1992, Chapter 6.6) calls their model a cluster model. Also, Fagin
et al. (2003, Chapter 9.6) and Meyer and Hoek (1995, Chapter 2.9) study this approach.
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possible at each time. While an information correspondence is regarded as a purely
semantic counterpart of their model, I demonstrate that it can capture probabilistic
beliefs by defining it on an appropriate set-algebraic structure. This paper also takes
one step further to characterize various logical and introspective properties. This paper
also connects it to the mathematical psychology literature.

The paper is organized as follows. Section 2 formally defines information corre-
spondences. It demonstrates that information correspondences generalize possibility
correspondences. It also provides examples of information correspondences that cannot
be captured by possibility correspondences. Section 3 analyzes logical and introspec-
tive properties of information correspondences, including beliefs in those properties.
Section 4 studies the equivalence among an information correspondence and alterna-
tive knowledge and belief representations in economics and mathematical psychology.
Section 5 studies an economic application in which an agent’s beliefs are induced from
her preferences. It provides an economic example of an information correspondence
that cannot be captured by a possibility correspondence. Section 6 provides conclud-
ing remarks. Proofs are relegated to Appendix A. Appendix B provides supplementary
results.

2 An Information Correspondence

I represent agents’ beliefs (knowledge if it is truthful) on a state space. A state space
is a pair (Ω,D), where Ω is a set of states of the world and where D is a collection of
events, i.e., subsets of states. Throughout the paper, to accommodate qualitative and
probabilistic beliefs in the same framework and possibly at the same time, I assume
that (Ω,D) is a measurable space, that is, D is a σ-algebra on Ω.10 Thus, D contains
the empty set ∅ and the entire state space Ω and is closed under complementation and
under countable union (and consequently countable intersection).11 Denote by P(Ω)
the power set of Ω. The power set P(Ω) is also a σ-algebra. Denote the complement
of E ∈ P(Ω) by Ec or ¬E.

Below, Section 2.1 defines an information correspondence. Section 2.2 provides
examples.

10For example, Meier (2008) studies knowledge and σ-additive probabilistic beliefs on a σ-algebra.
11I make a technical remark that the analysis of this paper carries over to the following more

general class. Letting κ be an infinite cardinal, a collection D of subsets of Ω is a κ-algebra (on Ω)
if D contains ∅ and Ω and if D is closed under complementation and under arbitrary union (and
intersection) of any non-empty sub-collection with cardinality less than κ. For instance, an ℵ0-algebra
is an algebra of sets where ℵ0 is the least infinite cardinal. An ℵ1-algebra is a σ-algebra, where ℵ1 is the
least uncountable cardinal. Meier (2006) studies a canonical representation of agents’ finitely-additive
beliefs on a κ-algebra. Fukuda (2024b) studies a canonical representations of agents’ qualitative beliefs
on a κ-algebra. The analysis also carries over to the class of complete algebras: D is a complete algebra
(on Ω) if D contains ∅ and Ω and if D is closed under complementation and is closed under arbitrary
union (and intersection).
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2.1 Definition of an Information Correspondence

I represent an agent’s belief (or knowledge) on a state space by an information cor-
respondence. For ease of exposition, unless otherwise stated, I restrict attention to a
single agent. The information correspondence retains the spirit of a possibility cor-
respondence in the sense that the agent’s belief is logically entailed from her infor-
mation. The only requirement is logical monotonicity: the agent believes any logical
consequence of her own belief. Thus, I dispense with the conjunction and necessitation
properties endemic in possibility correspondences. The agent may believe events E
and F without believing the conjunction E ∩F . She may fail to believe a tautology Ω.

The information correspondence I associates, with each state ω, a collection of
events I(ω) ∈ P(D) that can be a source of beliefs at the state ω in the following
sense: the agent believes an event E at the state ω if there is an event F ∈ I(ω) which
is included in E. Each element of I(ω) can be understood as a piece of information
available to the agent at state ω. Call E an information set at ω if E ∈ I(ω).

The information correspondence is a mapping I : Ω → P(D) satisfying a certain
regularity condition. To define the regularity condition, for any Γ ∈ P(D), define

↑ Γ := {E ∈ D | there is F ∈ Γ with F ⊆ E}.

If Γ is the agent’s collection of information at a particular state (i.e., Γ = I(ω) for
some ω ∈ Ω) then E ∈↑ Γ means that E is entailed from some piece of information
F ∈ Γ. I call such Γ an information collection in the sense that it is a collection of
information sets. Note that ↑ Γ is closed under monotonicity (precisely, set inclusion):
↑↑ Γ ⊆↑ Γ (i.e., if F ∈↑ Γ and F ⊆ E then E ∈↑ Γ).

With these in mind, I formally define an information correspondence. An informa-
tion correspondence on a state space (Ω,D) is a mapping I : Ω→ P(D) which satisfies
the regularity condition that, for each E ∈ D,

{ω ∈ Ω | E ∈↑ I(ω)} ∈ D. (1)

Condition (1) states that the set of states at which the agent has information to support
an event E itself is an event. I define the left-hand side of Expression (1) as:

BI(E) := {ω ∈ Ω | E ∈↑ I(ω)}. (2)

Thus, BI(E) is the event that (i.e., the set of states at which) the agent believes
E. Define the belief operator BI : D → D derived from I through Equation (2).
Condition (1) grantees that BI is a well-defined operator. Higher-order beliefs are
generated through iterating the belief operator.

I make five remarks on the belief operator BI . First, observe that ↑ I(ω) is exactly
the collection of events that the agent believes at ω. Put differently,

↑ I(ω) = {E ∈ D | ω ∈ BI(E)},
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that is, E ∈↑ I(ω) if and only if (hereafter, often abbreviated as iff) ω ∈ BI(E). Also,
one can regard ↑ I itself as an information correspondence, i.e., a mapping from Ω into
P(D) such that (↑ I)(ω) =↑ I(ω) for each ω ∈ Ω.

Second, the belief operator BI satisfies Monotonicity:

E ⊆ F implies BI(E) ⊆ BI(F ).

That is, if the agent believes an event E at a state and if E implies F (in the sense
of E ⊆ F ), then she believes F at that state. Section 4.1 establishes the equivalence
between an information correspondence and a monotone belief operator.

Third, the mapping ↑ I : Ω → P(D) coincides with a monotone neighborhood
system. A neighborhood system assigns, to each state, the collection of events that
the agent believes at that state. A neighborhood system is monotone when the agent’s
belief operator satisfies Monotonicity. Thus, the information correspondence I is iden-
tified as a monotone neighborhood system iff I =↑ I.

Fourth, the agent considers an event E possible at a state ω if she does not believe
Ec at ω. Denote by LI the agent’s possibility operator:

LI(E) := (¬BI)(Ec) ∈ D for all E ∈ D.12

The event that the agent considers E possible is

LI(E) = {ω ∈ Ω | F ∩ E 6= ∅ for all F ∈ I(ω)}. (3)

The agent considers E possible at ω when her information set at ω is always not in-
consistent with E. Section 4.2 connects the possibility operator to a closure operator
of Doignon and Falmagne (1985, 1999) and Falmagne and Doignon (2011) in mathe-
matical psychology.

Fifth, if I is singleton-valued (i.e., if I(·) = {P (·)}) then it reduces to the possibility
correspondence P : Ω → D such (i) that each information/possibility set P (ω) is an
event and (ii) that I satisfies the regularity condition that

{ω ∈ Ω | P (ω) ⊆ E} ∈ D for each E ∈ D.13

More generally, I introduce the condition under which I is identified with a possi-
bility correspondence. Namely, I satisfies the Kripke property if each I(ω) contains a
minimum element, i.e., there is P (ω) ∈ I(ω) such that P (ω) ⊆ E for all E ∈ I(ω). If I

12Possibility (or compatibility) is often considered to be the dual of knowledge or belief (e.g., Fagin
et al., 2003; Hintikka, 1962).

13The regularity condition requires the belief operator induced by the possibility correspondence
P to be well-defined. Thus, the possibility correspondence P has to satisfy the regularity condition.
See Samet (2010) for examples of a state space (Ω,D) in which D is an algebra of sets and in which a
partitional possibility correspondence P : Ω→ P(Ω) (i.e., a partition cell P (ω) may not be an event)
does not induce a well-defined knowledge operator from D into itself.
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satisfies the Kripke property, then the agent’s beliefs are represented by I(·) = {P (·)},
because the collection ↑ I(ω) of events that the agent believes at a state ω satisfies

↑ I(ω) = {E ∈ D | P (ω) ⊆ E} =↑ {P (ω)}.

The following proposition formalizes this argument in terms of the belief operator,
and demonstrates that an information correspondence is identified as a possibility
correspondence under the Kripke property.

Proposition 1. The following are equivalent.

1. An information correspondence I : Ω→ P(D) satisfies the Kripke property.

2. For each ω ∈ Ω, there is P (ω) ∈ I(ω) such that, for all E ∈ D,

ω ∈ BI(E) iff P (ω) ⊆ E.

To conclude this subsection, I make a connection to a “surmise function” in Doignon
and Falmagne (1985, 1999, 2016) and Falmagne and Doignon (2011). They study
the knowledge of an agent regarding subsets of Ω, which consists of “questions” or
“items.” Again, note that I keep the same notations in order to make it easier to
see the connections and that I append the quotation mark to the terminologies in the
mathematical-psychology literature. Table A.1 in Appendix A.1 lists the correspon-
dence of terminologies.

Doignon and Falmagne (1985, 1999, 2016) and Falmagne and Doignon (2011) intro-
duce a “surmise system” (Ω, I) as a way to model an agent’s knowledge. A “surmise
function” is a mapping I : Ω → P(P(Ω)) (i.e., D = P(Ω)) which satisfies certain
logical and introspective properties of knowledge to be discussed in Section 3. Each
I(ω) is interpreted as encoding all possible (not necessarily unique) ways of inferring
a correct response to the “question” ω. Put differently, if the agent is capable of solv-
ing the “question” ω, then there exists E ∈ I(ω) such that she is capable of solving
all the “questions” in E. Such E (a member of I(ω)) is referred to as a “clause” (a
“background” or a “foundation”) for the “question” ω.

2.2 Examples of Information Correspondences

So far, the previous subsection has defined an information correspondence, and Propo-
sition 1 has shown that the information correspondence generalizes a possibility corre-
spondence. This subsection provides two examples of an information correspondence
that cannot be reduced to a possibility correspondence.

2.2.1 Dispensing with Conjunction or Necessitation

The first example demonstrates that one can dispense with the agent’s conjunctive abil-
ity (i.e., the agent believes the conjunction of what she believes) by having multiple
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information sets. The example also shows that one can dispense with the necessitation
property (i.e., the agent believes a tautology) by allowing the information correspon-
dence to be empty-valued.

Example 1. Let (Ω,D) = ({ω1, ω2, ω3},P(Ω)). Define I : Ω→ P(D) as follows:

I(ω) =

{
{{ω1, ω2}, {ω1, ω3}} if ω = ω1

∅ if ω ∈ {ω2, ω3}
.

The agent believes {ω1, ω2} and {ω1, ω3} at state ω1 but she does not believe {ω1, ω2}∩
{ω1, ω3} at that state:

BI({ω1, ω2}) ∩BI({ω1, ω3}) 6⊆ BI({ω1, ω2} ∩ {ω1, ω3}).

The failure of the conjunction property comes from the specification that an informa-
tion collection I(ω) may not be closed under intersection. At state ω2 or ω3, she does
not believe anything at all, and thus BI(Ω) = {ω1}. Necessitation (i.e., BI(Ω) = Ω)
fails because the information correspondence is empty-valued at some states. By in-
spection, one can show:

BI(E) =

{
{ω1} if E ∈ {{ω1, ω2}, {ω1, ω3},Ω}
∅ otherwise

. (4)

The belief operator BI cannot be induced by a possibility correspondence because
any belief operator that is induced by a possibility correspondence has to satisfy the
conjunction and necessitation properties.

This example also relates to the literature on unawareness. The literature has two
representations: a standard-state-space model, in which the underlying state space
consists of a single space; and a generalized-state-space model, in which the underlying
state space consists of multiple subspaces. Dekel, Lipman, and Rustichini (1998) show
that a standard-state-space model cannot represent a non-trivial form of unaware-
ness if an underlying knowledge operator satisfies the monotonicity and necessitation
properties and if underlying knowledge and unawareness operators satisfy certain de-
sirable properties. Thus, for any standard possibility correspondence model, in which
the derived knowledge operator satisfies the monotonicity and necessitation properties,
knowledge and unawareness cannot satisfy certain desirable properties. In contrast, the
information correspondence approach can drop Necessitation.14 In fact, Modica and

14Fukuda (2021) studies unawareness without the conjunction or necessitation properties, in the
framework in which agents’ knowledge and unawareness operators are primitives on standard and
generalized state spaces. It would be an interesting avenue for future research to generalize the
framework of information correspondences to a generalized state space model of unawareness and
knowledge such as Heifetz, Meier, and Schipper (2006, 2008) and that of unawareness and qualitative
belief by Fukuda (2023).
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Rustichini (1994, Section 4) provide an example of a two-states model of unawareness
in which the agent’s knowledge fails Necessitation. Their knowledge operator can be
induced from a simplified version of this example in which ω2 = ω3.15

2.2.2 Modeling Qualitative and Quantitative Beliefs in a Unified Manner

The second example demonstrates that an information correspondence, unlike a pos-
sibility correspondence, can capture probabilistic beliefs. That is, information corre-
spondences can capture both qualitative and quantitative beliefs in a unified manner.

Example 2. Consider a measurable space (Ω,D) = ([0, 1],B[0,1]), where B[0,1] is the
Borel σ-algebra on [0, 1]. For simplicity, suppose that the agent’s beliefs are dictated
by the Lebesgue measure µ on ([0, 1],B[0,1]) at every state.

I first show that her probability-one belief is not induced by a possibility corre-
spondence. Suppose to the contrary that her probability-one belief is induced by a
possibility correspondence P : Ω→ P(Ω): she believes an event E ∈ D with probabil-
ity one at a state ω iff

P (ω) ⊆ E.16

For each event Er := Ω\{r} ∈ D with r ∈ Ω, the agent assigns probability-one belief to
Er at each ω. Thus, P (ω) ⊆ Er for all r ∈ Ω. Taking the intersection over all r ∈ Ω, one
has P (ω) = ∅. Thus, her probability-one belief operator B : D → D satisfies B(E) = Ω
for all E ∈ D, that is, she assigns probability one to any event. This is impossible.
Since the agent assigns probability one to each event Er, one can generally only assert
that she assigns probability one to any countable intersection. Thus, this contradiction
comes from the arbitrary conjunction rendered by the possibility correspondence.

Next, I construct an information correspondence that can capture the agent’s
probability-one belief. Let I : Ω→ P(D) be such that

I(ω) := {E ∈ D | µ(E) = 1} for each ω ∈ Ω.

This is an information correspondence because, for any E ∈ D,

BI(E) =

{
∅ if µ(E) ∈ [0, 1)

Ω if µ(E) = 1
,

and thus BI(E) ∈ D for all E ∈ D. If the agent believes an event E with probability
one at a state ω, then, since µ(E) = 1, I have E ∈ I(ω) and thus ω ∈ BI(E).
Conversely, if ω ∈ BI(E) then there is F ∈ I(ω) (i.e., µ(F ) = 1) such that F ⊆ E.
Thus, the agent believes E with probability one at state ω.

15Rathke (2025) and Tada (2024) also study a variant of the standard-state-space possibility-
correspondence model of unawareness in which agents’ knowledge may fail Necessitation.

16Here, I establish the negative result even if I do not impose the assumption that each P (ω) is
measurable (i.e., an event).
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More generally, let (Ω,D) be an arbitrary measurable space, and let t : Ω × D →
[0, 1] be a function with the following two properties.

1. For each ω ∈ Ω, the mapping t(ω, ·) : D → [0, 1] is a monotone set function
that dictates the agent’s probabilistic beliefs at ω (e.g., a non-additive, finitely-
additive, or countably-additive probability measure).

2. For all (p, E) ∈ [0, 1]×D, {ω ∈ Ω | t(ω,E) ≥ p} ∈ D.

The first condition states that each t(ω, ·) represents the agent’s beliefs at ω. The
second is the regularity condition that the set of states at which the agent believes an
event E with probability at least p is also an event.

Call t : Ω × D → [0, 1] a type mapping (of the agent) if it satisfies the above two
conditions. For each state ω, call the set function t(ω, ·) the agent’s type at ω. For
each p ∈ [0, 1], the agent’s p-belief operator (Friedell, 1969; Monderer and Samet, 1989)
Bp : D → D is defined as

Bp(E) := {ω ∈ Ω | t(ω,E) ≥ p} for each E ∈ D. (5)

Now, for each p ∈ [0, 1], define the mapping Ip : Ω→ P(D) by

Ip(ω) := {E ∈ D | t(ω,E) ≥ p} for each ω ∈ Ω.

The mapping Ip is an information correspondence because

BIp(E) := {ω ∈ Ω | E ∈↑ Ip(ω)} = Bp(E) ∈ D for each E ∈ D.

Indeed, (Samet, 2000) shows that the p-belief operator approach is equivalent to the
type space approach.17 Since the information correspondence approach can represent
the agent’s p-belief operators, the information correspondence approach can accommo-
date both probabilistic and non-probabilistic beliefs in a unified manner. The infor-
mation correspondence approach thus enables one to introduce both qualitative and
probabilistic beliefs in, for example, a dynamic game where agents retain knowledge
of past observations and beliefs in future actions. The information correspondence
approach also enables one to study similarities and differences between qualitative and
probabilistic beliefs.18

3 Properties of an Information Correspondence

This section studies three kinds of properties of beliefs for an information correspon-
dence. The first consists of logical properties such as consistency, necessitation, and

17Meier (2006) and Zhou (2010) extend the conditions to finitely-additive beliefs. Fukuda (2025b)
studies various properties of non-additive beliefs.

18For the literature studying how knowledge is technically and conceptually different from
probability-one beliefs, see, for instance, Brandenburger and Dekel (1987), Dubra and Echenique
(2004), Fukuda (2019, 2024a), Hérves-Beloso and Monteiro (2013), Lee (2018), and Tóbiás (2021).
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conjunction properties. The second consists of introspective properties including the
truth axiom. These two kinds of properties generalize possibility correspondence mod-
els. The third kind comprises of “Belief-in” properties. When an agent’s belief is
not represented by a possibility correspondence but by an information correspondence,
while her belief may violate certain properties, she can still falsely believe that her
belief satisfies them.

3.1 Logical Properties

I introduce four well-known logical properties of beliefs to an information correspon-
dence: No-Contradiction, Consistency, Necessitation, and Countable Conjunction. In
terms of the belief operator, No-Contradiction states that the agent never believes a
contradiction in the form of the empty set. Consistency states that the agent does
not believe an event E and its negation Ec at the same time. Necessitation means
that the agent always believes a tautology of the form of the entire set. Countable
Conjunction states that whenever the agent believes each event from a (non-empty)
countable collection of events, she believes its conjunction.

While No-Contradiction and Consistency are exactly equivalent under the possibil-
ity correspondence model, Consistency is at least as strong as No-Contradiction in the
information correspondence model.19 The previous section has examined Necessitation
and Countable Conjunction.

Hereafter in this section, fix a state space (Ω,D). I define these logical properties
in a way so that an information correspondence I satisfies a logical property if each
information collection I(ω) satisfies it.20 With this in mind, I introduce the following
four logical properties to an information collection Γ.

1. An information collection Γ ∈ P(D) satisfies No-Contradiction if

∅ 6∈ Γ.

In words, Γ does not contain a contradiction in the form of the empty set.

2. The information collection Γ satisfies Consistency (or it is serial) if

E ∩ F 6= ∅ for any E,F ∈ Γ.

In words, any pair of information (E,F ) ∈ Γ2 is not contradictory with each
other. Consistency implies No-Contradiction.

19In the possibility correspondence model, qualitative belief is usually assumed to satisfy Consis-
tency (equivalently, No-Contradiction). Consistency plays an important role, for instance, in formal-
izing weak-dominance rationality in Bonanno and Tsakas (2018).

20When it comes to probabilistic beliefs represented by a type mapping, recall that a type mapping
t associates, with each state ω, a probability measure t(ω, ·) which is assumed to satisfy, for instance,
Necessitation: t(ω,Ω) = 1. That is, logical properties of beliefs (i.e., the type mapping) are encoded
as logical properties of realized beliefs t(ω, ·).
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3. The information collection Γ satisfies Necessitation if

Γ 6= ∅.

That is, Γ contains some information, and thus a tautology is inferred from it.

4. The information collection Γ satisfies Countable Conjunction if,

for any {Fn}n∈N ⊆ Γ, there is F ∈ Γ with F ⊆
⋂
n∈N

Fn.
21

Intuitively, for any given countable collection of information, the information
collection Γ is rich enough to have another information implying the conjunction
of the given family.

Again, an information correspondence I : Ω→ P(D) satisfies a given logical prop-
erty if every I(ω) satisfies it. For instance, the information correspondence I satisfies
No-Contradiction if ∅ 6∈ I(ω) for all ω ∈ Ω.

Recalling that ↑ Γ corresponds to the collection of events that the agent believes
by making inferences from Γ, I formalize the logical properties in terms of ↑ Γ instead
of the primitive Γ. As a consequence, the proposition below demonstrates that each
logical property of an information correspondence I embodies the intended definition
of the logical property of the belief operator BI .

Proposition 2. Let Γ be an information collection. Let I : Ω → P(D) be an infor-
mation correspondence.

1. (a) Γ satisfies No-Contradiction iff ↑ Γ satisfies it.

(b) I satisfies No-Contradiction iff ↑ I satisfies it iff BI(∅) = ∅.

2. (a) Γ satisfies Consistency iff ↑ Γ satisfies it iff Ec 6∈↑ Γ for any E ∈↑ Γ.

(b) I satisfies Consistency iff ↑ I satisfies it iff

BI(E) ⊆ (¬BI)(Ec) for all E ∈ D.

3. (a) Γ satisfies Necessitation iff ↑ Γ satisfies it iff Ω ∈↑ Γ.

(b) I satisfies Necessitation iff ↑ I satisfies it iff BI(Ω) = Ω.

4. (a) Γ satisfies Countable Conjunction iff ↑ Γ satisfies it iff ↑ Γ is closed under
(non-empty) countable intersection:⋂

n∈N

Fn ∈↑ Γ for any {Fn}n∈N ∈ P(↑ Γ).

21One can define variants of this conjunction property. For instance, Γ satisfies Finite Conjunction
if, for any F1, F2 ⊆ Γ, there is F ∈ Γ with F ⊆ F1 ∩ F2. For ease of exposition, I mainly focus on
Countable Conjunction.
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(b) I satisfies Countable Conjunction iff ↑ I satisfies it iff

⋂
n∈N

BI(Fn) ⊆ BI

(⋂
n∈N

Fn

)
for any {Fn}n∈N ∈ P(D).

Proposition 2 establishes the following two points. First, “part (a)” of Proposition
2 shows that the information collection Γ satisfies a given logical property iff the in-
formation collection ↑ Γ satisfies it. Thus, the information correspondence I satisfies
a given logical property iff the information correspondence ↑ I satisfies it. In other
words, the logical properties are preserved under the operation of taking “↑.” This
implies that the four logical properties of an information correspondence I are defined
in a way such that the properties only depend on ↑ I. That is, if two information cor-
respondences I and I ′ induce the same beliefs in that ↑ I =↑ I ′, then the information
correspondences I and I ′ share the same logical properties.

Second, “part (b)” of Proposition 2 demonstrates that each logical property of
the information correspondence I captures the intended logical property of the belief
operator BI . Henceforth, BI is said to satisfy a given logical property (e.g., No-
Contradiction) if I satisfies it. As an example, the belief operator defined by Equation
(4) satisfies No-Contradiction and Consistency but fails Necessitation and Countable
Conjunction. For (1b), No-Contradiction means that there is no state at which the
agent believes a contradiction in the form of ∅. For (2b), Consistency means that if
the agent believes E, then she does not believe its negation Ec. Consistency implies
No-Contradiction because BI(∅) ⊆ BI(E) ∩BI(Ec) by Monotonicity of BI . For (3b),
Necessitation means that the agent always believes a tautology in the form of Ω. It can
be seen that BI satisfies Necessitation iff BI(BI(Ω)) = Ω. That is, the agent always
believes a tautology iff she always believes that she believes a tautology.22 For (4b),
Countable Conjunction means that if the agent believes each of a countable collection
of events, then she believes its conjunction. Under Countable (in fact, Finite) Con-
junction, Consistency and No-Contradiction are equivalent. Proposition 2 generalizes
the characterizations of the logical properties of the possibility correspondence model.

3.2 Introspective Properties

Next, I introduce four well-known introspective properties of beliefs (in computer sci-
ence, economics, game theory, logic, and philosophy) to an information correspondence.
They generalize the reflexivity, transitivity, Euclideanness, and symmetry axioms of a
possibility correspondence to an information correspondence.

In terms of the belief operator, reflexivity characterizes Truth Axiom: if the agent
“knows” an event at a state then the event holds true at that state. Truth Axiom

22The proof goes as follows. If BI satisfies Necessitation, then it follows from Ω = BI(Ω) that
Ω = BI(Ω) = BI(BI(Ω)). Conversely, if Ω = BI(BI(Ω)), then it follows from BI(Ω) ⊆ Ω that
Ω = BI(BI(Ω)) ⊆ BI(Ω) ⊆ Ω.
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distinguishes belief and knowledge in that belief can be false while knowledge has
to be true. Transitivity characterizes Positive Introspection: if the agent believes
an event then she believes that she believes it. Euclideanness characterizes Negative
Introspection: if the agent does not believe an event then she believes that she does
not believe it. Symmetry characterizes the following form of introspection: if the agent
considers it possible that she believes an event E at a state, then the event has to hold
true at that state. It is well-known that if a possibility correspondence is reflexive and
transitive, it is Euclidean iff it is symmetric.

As I will discuss below, one of the technical contributions of this paper is to provide
the formulations of reflexivity, transitivity, Euclideanness, and symmetry. Thus, I start
by presenting them.

1. An information correspondence I is reflexive (or satisfies Truth Axiom) if, for
any (ω,E) ∈ Ω×D,

E ∈ I(ω) implies ω ∈ E.23

In words, the agent’s information is always correct at each state.

2. The information correspondence I is transitive (or satisfies Positive Introspec-
tion) if, for any (ω,E) ∈ Ω×D with E ∈ I(ω), there is F ∈ I(ω) such that:

if ω′ ∈ F then there is E ′ ∈ I(ω′) with E ′ ⊆ E.

Put differently, for any information E at a state, there is another information F
at the same state (which can possibly be E itself) such that E is always supported
as long as F is true.

3. The information correspondence I is Euclidean (or satisfies Negative Introspec-
tion) if the following holds. If (ω,E) ∈ Ω×D satisfies Ec∩F 6= ∅ for all F ∈ I(ω),
then:

there is F ′ ∈ I(ω) such that if ω′ ∈ F ′ then Ec ∩ F 6= ∅ for any F ∈ I(ω′).

In words, at a state ω, if there is no information that supports E, then there
exists a piece of information F ′ that supports that there is no information that
supports E.

4. The information correspondence I is symmetric if the following obtains. Let
(ω,E) ∈ Ω×D. If, for any F ∈ I(ω),

there are ω′ ∈ F and F ′ ∈ I(ω′) with F ′ ⊆ E,

then ω ∈ E. This condition states that if the agent does not believe that she
does not believe E then E is true.

23That is, I(ω) ⊆ {E ∈ D | ω ∈ E} for any ω ∈ Ω.
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To compare the axioms of Euclideanness and symmetry, I restate them.

3. The information correspondence I is Euclidean iff the following holds. Let
(ω,E) ∈ Ω×D. If, for any F ∈ I(ω),

there are ω′ ∈ F and F ′ ∈ I(ω′) with F ′ ⊆ E,

then there is F ∈ I(ω) with F ⊆ E. This means that if the agent does not
believe that she does not believe an event E, then she believes E.

4. The information correspondence I is symmetric iff, for any (ω,E) ∈ Ω×D with
ω 6∈ E,

there is F ∈ I(ω) such that ω′ ∈ F implies F ′ ∩ Ec 6= ∅ for all F ′ ∈ I(ω′).

Now, I characterize the introspective properties.

Proposition 3. Let I : Ω → P(D) be an information correspondence. For each
introspective property, the following are all equivalent.

1. (a) I is reflexive.

(b) ↑ I is reflexive.

(c) BI(E) ⊆ E for all E ∈ D.

2. (a) I is transitive.

(b) ↑ I is transitive.

(c) For any ω ∈ Ω, if E ∈↑ I(ω) then {ω′ ∈ Ω | E ∈↑ I(ω′)} ∈↑ I(ω).

(d) BI(·) ⊆ BIBI(·).

3. (a) I is Euclidean.

(b) ↑ I is Euclidean.

(c) If E 6∈↑ I(ω) for some (ω,E) ∈ Ω×D, then {ω′ ∈ Ω | E 6∈↑ I(ω′)} ∈↑ I(ω).

(d) (¬BI)(·) ⊆ BI(¬BI)(·).

4. (a) I is symmetric.

(b) ↑ I is symmetric. That is, let (ω,E) ∈ Ω × D, and suppose that, for any
F ∈↑ I(ω), there is ω′ ∈ F with E ∈↑ I(ω′). Then ω ∈ E.

(c) (¬BI)(¬BI)(E) ⊆ E for all E ∈ D.

Similarly to Proposition 2, Proposition 3 establishes the following two points. First,
the information correspondence I satisfies a given introspective property iff the infor-
mation correspondence ↑ I satisfies the given property. Put differently, the intro-
spective properties are also preserved under the operation of taking “↑.” Thus, if
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information correspondences I and I ′ induce the same beliefs in that ↑ I =↑ I ′, then
I and I ′ share the introspective properties.

Second, as briefly discussed above, each introspective property of the information
correspondence I captures the intended introspective property of the belief operator
BI . Henceforth, BI is said to satisfy a given introspective property (e.g., Truth Axiom)
if I satisfies it.

For Positive Introspection and Negative Introspection, Thijsse (1993) proves the
equivalence of (2c) and (2d) and that of (3c) and (3d). Proposition 3 (2) and (3)
provide the conditions on the primitive I under which the resulting belief satisfies
Positive Introspection and Negative Introspection.

Next, I discuss an implication of the symmetry axiom. If I is symmetric, then the
resulting property on BI is often referred to as the axiom B in logic (e.g., Chellas,
1980). Using also the restatement, it can be seen that if I is reflexive and transitive,
then I is symmetric iff it is Euclidean.24 This argument generalizes the equivalence
of the Euclidean and symmetry properties for a reflexive and transitive possibility
correspondence to a reflexive and transitive information correspondence.

An interesting implication of symmetry is that if I is serial, symmetric, and tran-
sitive, then it satisfies all the other properties mentioned so far.25

Corollary 1. If I : Ω → P(D) is a serial, symmetric, and transitive information
correspondence, then it satisfies all the properties mentioned in Propositions 2 and 3.

In Corollary 1, the assumption that the information correspondence I is serial
and transitive, i.e., BI satisfies Consistency and Positive Introspection, is common
in economics and game theory, e.g., when one studies agents’ qualitative beliefs. The
corollary states that if, in addition, I satisfies symmetry, then BI satisfies Truth Axiom.
It is also interesting that, then, BI satisfies Countable Conjunction.

I discuss another corollary of Proposition 3. In the information correspondence
model, Negative Introspection implies Necessitation and the axiom B (property (4c)
in Proposition 3) implies Necessitation. For the first assertion, if I is Euclidean then
it satisfies Necessitation as I(ω) = ∅ leads to a contradiction.26 Similarly for the
second assertion, if I is symmetric then it satisfies Necessitation as I(ω) = ∅ leads to
a contradiction.27

24One can also recast this statement in terms of the belief operator BI as follows: if BI satisfies
Monotonicity, Truth Axiom, and Positive Introspection, then (4c) and (3d) in Proposition 3 are
equivalent. The proof goes as follows. (4c) implies (¬BI)(E) ⊆ BI(¬BI)BI(E). Since BI(E) ⊆
BIBI(E) by Positive Introspection and since BI is monotone, it follows that BI(¬BI)BI(E) ⊆
BI(¬BI)(E). Thus, (¬BI)(E) ⊆ BI(¬BI)(E), as desired. Conversely, Negative Introspection and
Truth Axiom yield (¬BI)(¬BI)(E) ⊆ BI(E) ⊆ E.

25In fact, the information correspondence I satisfies all the properties in Section 3.3 as well.
26In terms of the belief operator, the proof goes as follows. Suppose to the contrary that there is ω ∈

(¬BI)(Ω). Then, it follows from Negative Introspection and Monotonicity that ω ∈ BI(¬BI)(Ω) ⊆
BI(Ω), a contradiction.

27In terms of the belief operator, the proof goes as follows. Suppose to the contrary that there is
ω ∈ (¬BI)(Ω). Then, it follows from Monotonicity and the axiom B (property (4c) in Proposition 3)
that ω ∈ (¬BI)(Ω) ⊆ (¬BI)(¬BI)(∅) ⊆ ∅, a contradiction.
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The rest of this subsection discusses the assumptions on a surmise function in
Doignon and Falmagne (1985, 1999, 2016) and Falmagne and Doignon (2011). To that
end, I introduce two additional properties of an information correspondence I : Ω →
P(D).

1. The information correspondence I is strongly transitive if, for any (ω,E) ∈ Ω×D
with E ∈ I(ω),

if ω′ ∈ E then there is E ′ ∈ I(ω′) with E ′ ⊆ E.

This is the transitivity condition in Doignon and Falmagne (1985, Definition 3.5).

2. The information correspondence I satisfies the minimality condition if

E = F for any E,F ∈ I(ω) with E ⊆ F.

The idea behind the minimality condition is that, if E ∈ I(ω) is not minimal
in that there is F ∈ I(ω) with F ( E, then E is redundant in I(ω) in that
↑ I(ω) =↑ (I(ω) \ {E}).

Now, a “surmise function” is a mapping I : Ω → P(P(Ω)) (i.e., D = P(Ω))
satisfying (i) reflexivity, (ii) strong transitivity, (iii) Necessitation, and (iv) minimality.
The agent whose knowledge is represented by a “surmise function” satisfies Truth
Axiom, Positive Introspection, and Necessitation.

Three remarks on strong transitivity are in order. First, for a singleton-valued
information correspondence, transitivity and strong transitivity are equivalent. Second,
while strong transitivity implies transitivity, the converse may not be true. Example
A.1 in Appendix A.4 provides an example of I which is transitive but not strongly
transitive. Third, Example A.2 in Appendix A.4 shows that ↑ I may not be strongly
transitive even if I is.28

Finally, I remark on Negative Introspection. While a partitional (i.e., reflexive,
transitive, and Euclidean) possibility correspondence in economics and game theory, by
construction, presupposes Negative Introspection, a “surmise function” in the “knowl-
edge space theory” (Doignon and Falmagne, 1985, 1999, 2016; Falmagne and Doignon,

28Fagin and Halpern (1987) consider the following form of transitivity that implies strong transi-
tivity: if ω′ ∈ E ∈ I(ω) then E ∈ I(ω′). Thijsse (1993, Example 4) provides an example where this
stronger form of transitivity is not necessary for characterizing Positive Introspection. While it can
be seen that the monotone information correspondence I =↑ I in his example satisfies transitivity
but violates strong transitivity, for future use, I provide examples of reflexive information correspon-
dences in Examples A.1 and A.2 in Appendix A.4. On a related point, Fagin and Halpern (1987) also
consider the following stronger Euclidean property: ω′ ∈ E ∈ I(ω) implies I(ω′) ⊆ I(ω). Thijsse
(1993, Example 5) demonstrates that this stronger Euclidean property does not necessarily character-
ize Negative Introspection. One of the technical contributions of this paper is to provide the technical
formulations of transitivity and Euclideanness as demonstrated in Proposition 3.
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2011) does not presuppose Negative Introspection.29 As Fagin et al. (2003, Chapter 3)
argue that “there is no one “true” notion of knowledge” and that “the appropriate no-
tion depends on the application,” I believe that the aforementioned difference between
economics and mathematical psychology comes from the different contexts in which
knowledge is analyzed in these distinct fields.

3.3 “Belief-in” Properties

Finally, this subsection introduces and characterizes properties that the agent believes
in a certain logical or introspective property. It studies four such “Belief-in” properties:
Belief in Correct Belief, Belief in Consistency, Belief in Perfect Reasoning, and Belief in
Countable Conjunction. Belief in Correct Belief states that the agent believes that her
belief satisfies Truth Axiom (even if her belief may violate it). Belief in Consistency
states that the agent believes that her belief satisfies Consistency. Belief in Perfect
Reasoning states that the agent believes that her belief satisfies “modus ponens” (i.e.,
if she believes E and (¬E)∪F , then she believes F ). Belief in Countable Conjunction
states that the agent believes that her belief satisfies Countable Conjunction.

Such properties are interesting in their own right when it comes to “boundedly
rational” agents, as Fagin and Halpern (1987) extensively study some of such proper-
ties. Also, such properties play some roles in epistemic characterizations of solution
concepts of games and other applications. I start by presenting the formulations of the
four “Belief-in” Properties.

1. An information correspondence I is secondary reflexive (or satisfies Belief in
Correct Belief ) if, for any (ω,E) ∈ Ω×D, there is F ∈ I(ω) such that:

if ω′ ∈ F and there is F ′ ∈ I(ω′) with F ′ ⊆ E, then ω′ ∈ E.

Roughly, there is always information indicating that if the agent believes E then
E is true.

2. The information correspondence I is secondary serial (or satisfies Belief in Con-
sistency) if, for any (ω,E) ∈ Ω×D, there is F ∈ I(ω) such that:

if ω′ ∈ F and there is F ′ ∈ I(ω′) with F ′ ⊆ E, then H∩E 6= ∅ for all H ∈ I(ω′).

Roughly, there is always information implying that if the agent believes E then
she does not believe the negation Ec.

29While partitional knowledge models are prevalent in economics and game theory, non-partitional
(reflexive and transitive) possibility correspondence models have also been studied. See, for example,
Dekel and Gul (1997), Geanakoplos (2021), Morris (1996), and Shin (1993). Also, an agent whose
knowledge satisfies Negative Introspection cannot be unaware of any event in the sense that if she
does not know an event then she knows that she does not know it. See footnote 8 for unawareness.
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3. The information correspondence I satisfies Belief in Perfect Reasoning if, for any
(ω,E, F ) ∈ Ω×D ×D, there is G ∈ I(ω) with the following property:

if ω′ ∈ G,E ′ ⊆ E for some E ′ ∈ I(ω′), and if F ′ ⊆ (¬E)∪F for some F ′ ∈ I(ω′),

then there is G′ ∈ I(ω′) such that G′ ⊆ F . Roughly, there is always information
implying that if the agent believes E and (¬E) ∪ F then she believes F .

4. The information correspondence I satisfies Belief in Countable Conjunction if, for
any ω ∈ Ω and for any countable collection {Fn}n∈N of events, there is G ∈ I(ω)
such that:

if ω′ ∈ G and {Fn}n∈N ⊆ I(ω′), then there is G′ ∈ I(ω′) with G′ ⊆
⋂
n∈N

Fn.

Roughly, there is always information that implies that her belief satisfies Count-
able Conjunction.

The following proposition characterizes the “Belief-in” properties.

Proposition 4. Let I : Ω → P(D) be an information correspondence. For each
introspective property, the following are all equivalent.

1. (a) I is secondary reflexive.

(b) ↑ I is secondary reflexive. That is, for any (ω,E) ∈ Ω × D, there is F ∈↑
I(ω) such that if ω′ ∈ F , then E ∈↑ I(ω′) implies ω′ ∈ E.

(c) Ω = BI((¬BI)(E) ∪ E) for any E ∈ D.

2. (a) I is secondary serial.

(b) ↑ I is secondary serial. That is, for any (ω,E) ∈ Ω×D, there is F ∈↑ I(ω)
such that if ω′ ∈ F and E ∈↑ I(ω′), then Ec 6∈↑ I(ω′).

(c) Ω = BI(¬(BI(E) ∩BI(Ec))) for any E ∈ D.

3. (a) I satisfies Belief in Perfect Reasoning.

(b) ↑ I satisfies Belief in Perfect Reasoning. That is, for any (ω,E, F ) ∈
Ω × D × D, there is G ∈↑ I(ω) such that if ω′ ∈ G, E ∈↑ I(ω′), and if
(¬E) ∪ F ∈↑ I(ω′), then F ∈↑ I(ω′).

(c) BI(¬(BI(E) ∩BI((¬E) ∪ F )) ∪BI(F )) = Ω for any E,F ∈ D.

4. (a) I satisfies Belief in Countable Conjunction.

(b) ↑ I satisfies Belief in Countable Conjunction. That is, for any ω ∈ Ω and
{Fn}n∈N ∈ P(D), there is G ∈↑ I(ω) such that if ω′ ∈ G and {Fn}n∈N ⊆↑
I(ω′), then

⋂
n∈N Fn ∈↑ I(ω′).

(c) BI(¬(
⋂

n∈NBI(Fn)) ∪BI(
⋂

n∈N Fn)) = Ω for any {Fn}n∈N ∈ P(D).
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Similarly to Propositions 2 and 3, Proposition 4 establishes the following two points.
First, the information correspondence I satisfies a given “Belief-in” property iff the
information correspondence ↑ I satisfies the given property. Put differently, the “Belief-
in” properties are also preserved under the operation of taking “↑.” Thus, if information
correspondences I and I ′ induce the same beliefs in that ↑ I =↑ I ′, then I and I ′
share the introspective properties.

Second, each “Belief-in” property of the information correspondence I captures the
intended property of the belief operator BI . Henceforth, BI is said to satisfy a given
introspective property (e.g., Belief in Correct Belief) if I satisfies it.

Belief in Correct Belief means that the agent always believes that either she does
not believe an event E or otherwise E entails. Likewise, Belief in Consistency means
that the agent always believes that her belief is consistent. Moreover, Belief in Perfect
Reasoning states that the agent always believes that if she believes E and E implies
F then she believes F .30 Belief in Countable Conjunction states that the agent always
believes that if she believes each Fn then she believes its conjunction

⋂
n∈N Fn.

Under Necessitation, Belief in Correct Belief is a weakening of Truth Axiom. The
interpersonal version of Belief in Correct Belief,

Ω = BIj((¬BIi)(E) ∪ E),

where Ii and Ij are information correspondences of agents i and j,31 plays an important
role in the existence of common prior (and consequently Aumann (1976)’s Agreement
theorem) and an epistemic characterization of backward induction as an implication of
common knowledge of rationality a la Aumann (1995) in a possibility correspondence
model.32

I remark that Negative Introspection and Monotonicity imply Belief in Correct
Belief (or, if I is Euclidean then it is secondary reflexive). For any (ω,E) ∈ Ω × D,
Negative Introspection implies either E ∈↑ I(ω) or (¬BI)(E) ∈↑ I(ω). In either case,
(¬BI)(E) ∪ E ∈↑ I(ω).

Given Monotonicity, if I satisfies any of Belief in Correct Belief, Belief in Consis-
tency, Belief in Perfect Reasoning, or Belief in Countable Conjunction, then it satisfies
Necessitation. In other words, the failure of Necessitation implies that of each of these

30Fagin and Halpern (1987) study the notion of a narrow-minded agent. Call the agent narrow-
minded if, for any ω ∈ Ω, there is E ∈ I(ω) such that ω′ ∈ E implies I(ω′) = {E}. As in Fagin and
Halpern (1987), this axiom implies Belief in Consistency and Belief in Perfect Reasoning. In contrast,
parts (2) and (3) of Proposition 4 fully characterize these two properties.

31One can analogously characterize this property: For any (ω,E), there is F ∈↑ Ij(ω) such that if
ω′ ∈ F then E ∈↑ Ii(ω′) implies ω′ ∈ E.

32Specifically, Samet (2013) shows that, in the framework of Aumann (1995), common belief in
rationality implies backward induction outcomes (with Truth Axiom) when agents’ beliefs satisfy the
interpersonal version of secondary reflexivity Ω = BIj ((¬BIi)(E)∪E). Bonanno and Nehring (1998a)
study a similar property and characterize it as the absence of unbounded gains from betting. Bonanno
and Nehring (1998b) study another similar condition to study correlated equilibria under incomplete
information.
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properties. In fact, the information correspondence of Example 1 in Section 2.2 fails
Necessitation and all the “Belief-in” properties.

Next, I remark that Belief in Countable Conjunction is at least as strong as Belief
in Perfect Reasoning. This is because, under Monotonicity, Belief in Perfect Reasoning
can be shown to be equivalent to Belief in Finite Conjunction that is formulated below.

Remark 1. Belief in Finite Conjunction: for any (ω,E, F ) ∈ Ω × D × D, there is
G ∈↑ I(ω) such that if ω′ ∈ G and E,F ∈↑ I(ω′) then E ∩ F ∈↑ I(ω′).

Next, observe that under Necessitation, Consistency implies Belief in Consistency.
Likewise, under Necessitation, Truth Axiom and Countable Conjunction imply Belief in
Correct Belief and Belief in Countable Conjunction, respectively. In contrast, Example
A.3 in Appendix A.5 shows that, while BI violates Consistency, Truth Axiom, and
Countable Conjunction, the agent can still believe in these properties. Thus, not only
can the information correspondence capture the agent whose belief fails Countable
Conjunction, but also it can capture the very same agent who believes that her own
belief satisfies it.

One can also consider Belief in Positive Introspection and Belief in Negative In-
trospection. In the context of probabilistic beliefs, Samet (2000) considers Belief in
Positive Certainty in the context of agents’ expectations: letting t : Ω×D → [0, 1] be
a type mapping (recall Section 2.2.2), Belief in Positive Certainty is defined as:

B1((¬Bp)(E) ∪B1Bp(E)) = Ω for all E ∈ D,

where Bp is the p-belief operator defined by Expression (5).33

Finally, I remark on the properties of I when I is singleton-valued. Since the agent’s
belief satisfies Monotonicity, Necessitation, and Countable Conjunction, I(·) = {P (·)}
satisfies Belief in Perfect Reasoning and Belief in Countable Conjunction.

In fact, the properties of the information correspondence reduce to the well-known
properties of the possibility correspondence P . First, I is reflexive iff ω ∈ P (ω) (for
all ω ∈ Ω). Second, I is secondary reflexive iff ω′ ∈ P (ω) implies ω′ ∈ P (ω′). Third, I
is secondary serial iff ω′ ∈ P (ω) implies P (ω′) 6= ∅. Fourth, I is transitive iff P (ω′) ⊆
P (ω) for any ω′ ∈ P (ω). Fifth, I is Euclidean iff ω′ ∈ P (ω) implies Ec ∩P (ω′) 6= ∅ for
any E ∈ D with Ec∩P (ω) 6= ∅. It can be seen that I is Euclidean iff ω′ ∈ P (ω) implies
P (ω) ⊆ P (ω′). Sixth, I is symmetric if ω ∈ P (ω′) implies ω′ ∈ P (ω). On a related

33With slight abuse of notation, let B(Ω,D) be the set of bounded Borel measurable functions on
(Ω,D). Given a type mapping t, define the expectation operator Et : B(Ω,D) 3 f 7→ Et[f ] ∈ B(Ω,D)
by

Et[f ](ω) :=

∫
Ω

f(ω̃)t(ω, dω̃) for each ω ∈ Ω.

The expectation operator Et satisfies the law of iterated expectations if

EtEt[f ] = Et[f ] for all f ∈ B(Ω,D).

Samet (2000) shows that the law of iterated expectations implies Belief in Positive Certainty.
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point, as to logical properties, I is serial iff P (·) 6= ∅. Also, I satisfies No-Contradiction
iff P (·) 6= ∅. No-Contradiction and Consistency are equivalent with each other because
I(·) = {P (·)} satisfies Countable Conjunction.

4 Equivalence among Knowledge-Belief Represen-

tations

The previous section has shown that BI inherits the logical, introspective, and “Belief-
in” properties on a given I. Section 4.1 completes the equivalence between an infor-
mation correspondence and a monotone belief operator. This implies that the previous
results involving (monotone) belief operators can be replicated under the framework
of information correspondences. Section 4.2 formally studies a “surmise function” as a
reflexive and transitive information correspondence.

I begin by introducing a particular type of events known as self-evident events in
the literature. Letting B be a given monotone belief operator, an event E ∈ D is
self-evident if E ⊆ B(E), i.e., the agent believes E whenever E is true. Denote the
collection of self-evident events by

JB := {E ∈ D | E ⊆ B(E)}.

If an information correspondence I is given, then an event E is self-evident (i.e., E ⊆
BI(E)) if and only if the following holds:

for any ω ∈ E, there is F ∈ I(ω) such that F ⊆ E.34

In Doignon and Falmagne (1985, 1999, 2016) and Falmagne and Doignon (2011), a
self-evident event turns out to coincide with what they call a “knowledge state.” The

34Two remarks are in order. First, using self-evidence, one can introduce common belief among
an (at most countable and non-empty) set I of agents. For each agent i, let Ii be her information
correspondence, and denote by JBIi

the collection of self-evident events. Then, the collection of
publicly-evident events is given by

⋂
i∈I JBIi

. Following Monderer and Samet (1989), an event E is
common belief among agents I at a state ω if there is a publicly-evident event F such that ω ∈ F ⊆⋂

i∈I BIi(E). If E is common belief, then everybody believes E, everybody believes that everybody
believes E, and so on ad infinitum. Heifetz (1996, 1999) and Lismont and Mongin (1994a,b) study
common belief using monotone neighborhood systems. Fukuda (2020) studies various properties of
common belief in a framework in which no properties of individual beliefs are assumed. Second, one
can also define the dual notion of distributed knowledge (e.g., Fagin et al., 2003). In the formulation
of Fukuda (2025a), who uses the collections of self-evident events, an event E is distributed knowledge
among an (at most countable and non-empty) set of agents I at a state ω if there are a non-empty
sub-group Î of agents and self-evident events Fi ∈ JBIi

for each i ∈ Î such that ω ∈
⋂

i∈Î Ei ⊆ E.
Thus, E is distributed knowledge at ω if some agents in I can come to know it at ω by pooling their
individual information. Pacuit (2017), for instance, formalizes distributed belief using neighborhood
systems.
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“knowledge state” is interpreted as a set of “questions” that an agent is capable of
solving. The collection of knowledge states is referred to as the “knowledge structure.”35

4.1 Information Correspondences and Belief Operators

I define an information correspondence I from a given monotone belief operator B
in such a way that the induced belief operator BI coincides with the original opera-
tor B. Formally, for a given monotone belief operator B : D → D, an information
correspondence I : Ω→ P(D) is a generator of B (or I induces B) if

B = BI .

Generally, a given monotone belief operator B has multiple generators. Information
correspondences I and I ′ satisfying ↑ I =↑ I ′ induce the same belief operator BI =
BI′ . As the next proposition shows, the simplest way to find a generator of B is to
consider the information correspondence IB : Ω→ P(D) defined by

IB(ω) := {E ∈ D | ω ∈ B(E)} for each ω ∈ Ω. (6)

Henceforth, I define the information correspondence IB induced from a (monotone)
belief operator B through Equation (6). Since B satisfies Monotonicity, IB =↑ IB and
consequently B = BIB . Moreover, if B has multiple generators, then any generator I
is included in IB in the sense that

I(·) ⊆↑ I(·) =↑ IB(·) = IB(·).

If the given monotone belief operator B satisfies Truth Axiom and Positive Introspec-
tion, then the following proposition demonstrates that one can restrict attention to the
self-evident events.

Proposition 5. Let (Ω,D) be a measurable space.

1. If I : Ω→ P(D) is an information correspondence, then BI inherits the proper-
ties of beliefs imposed on I and ↑ I(·) =↑ IBI(·). Conversely, if B is a monotone
belief operator, then IB is a generator of B, i.e., B = BIB . Any generator I of
B satisfies the properties of beliefs imposed on B and I(·) ⊆ IB(·).

2. Let B : D → D satisfy Monotonicity, Truth Axiom, and Positive Introspection.
Define IJB

: Ω→ P(D) by

IJB
(ω) := {E ∈ JB | ω ∈ B(E)} for each ω ∈ Ω.

Then, IJB
is a reflexive and (strongly) transitive information correspondence that

generates B.

35Fukuda (2019) shows the one-to-one correspondence between a belief (knowledge) operator sat-
isfying Truth Axiom, Positive Introspection, and Monotonicity and its self-evident collection.
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Generators can be used to compare agents’ beliefs in the following way. For agents
i and j, let Ii and Ij be generators of Bi and Bj, respectively. Then,

Bi(·) ⊆ Bj(·) iff ↑ Ii(·) ⊆↑ Ij(·).

The right-hand side is also equivalent to:

for any ω ∈ Ω and E ∈ Ii(ω), there is F ∈ Ij(ω) such that F ⊆ E.

In mathematical psychology, Doignon and Falmagne (1999, Definition 3.16) call it an
“attribution order” (see also Doignon and Falmagne, 1985, Definition 3.3).

Moreover, Bi(·) ⊆ Bj(·) implies ↑ IBi
(·) ⊆↑ IBj

(·). Also, ↑ Ii(·) ⊆↑ Ij(·) implies
BIi(·) ⊆ BIj(·) through Equation (2). Hence,

↑ Ii(·) ⊆↑ IBj
(·) iff BIi(·) ⊆ Bj(·).

Following Doignon and Falmagne (1985, 1999) and Falmagne and Doignon (2011),
which compare different knowledge-belief representations by a Galois connection in or-
der theory, Remark B.1 in Appendix B formalizes this argument as a Galois connection
(see Appendix B for the definition of a Galois connection).

Finally, I remark that Proposition 5 (1) also holds for probabilistic beliefs (i.e.,
p-belief operators).

4.2 Reflexive and Transitive Information Correspondences

I study a “surmise function” as a reflexive and transitive information correspondence
because the “surmise function” I : Ω→ P(P(Ω)) is regarded as an information corre-
spondence on (Ω,P(Ω)) satisfying (i) reflexivity, (ii) strong transitivity, (iii) Necessita-
tion, and (iv) minimality. Doignon and Falmagne (1999, Theorems 3.10 and 6.25) show
a one-to-one correspondence between a “surmise function” and a “granular” “knowl-
edge structure.”36 Here, I show a general one-to-one correspondence between a reflexive
and (strongly) transitive information correspondence and the collection of self-evident
events on a state space by dropping the minimality condition. Observe also that, by
Proposition 3, there is a one-to-one correspondence between belief (knowledge) oper-
ators satisfying Monotonicity, Truth Axiom, and Positive Introspection and reflexive
and transitive information correspondences.

Proposition 6. Let (Ω,D) be a measurable space.

1. (a) Let J ∈ P(D) satisfy

{ω ∈ Ω | there is F ∈ J with ω ∈ F ⊆ E} ∈ J for each E ∈ D. (7)

36A “knowledge structure” J is granular (Doignon and Falmagne, 1999, Definition 1.35) if, for any
(ω,E) ∈ Ω×J with ω ∈ E, there is a minimal F ∈ J with ω ∈ F ⊆ E. Doignon and Falmagne (1985,
Theorem 3.7) establish the equivalence between a “surmise function” and a “knowledge structure”
when Ω is finite.
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The following mapping IJ : Ω→ P(D) is a reflexive and (strongly) transi-
tive information correspondence:

IJ (ω) := {E ∈ J | ω ∈ E} for each ω ∈ Ω. (8)

(b) If Ω ∈ J , then IJ (·) 6= ∅.

2. (a) Conversely, if I : Ω → P(D) is a reflexive and transitive information cor-
respondence, then JI ∈ P(D) defined below satisfies Condition (7):

JI := {E ∈ D | if ω ∈ E then there is F ∈ I(ω) with F ⊆ E}. (9)

(b) If I(·) 6= ∅, then Ω ∈ JI.

3. (a) Moreover, starting from J , J = JIJ .

(b) Starting from I, ↑ I =↑ IJI .

In mathematical psychology, Doignon and Falmagne (1985, 1999, 2016) and Fal-
magne and Doignon (2011) characterize the collection J of “knowledge states” as a
collection of events which are closed under arbitrary union. In contrast, Proposition 6
requires J to satisfy Condition (7). Now, the closure under arbitrary union turns out
to be equivalent to Condition (7) if D is closed under arbitrary union for the following
two observations.

1. IfD is closed under arbitrary union, then the set of states in Condition (7) reduces
to
⋃
{F ∈ J | F ⊆ E}.

2. For each E ∈ J , E =
⋃
{F ∈ J | F ⊆ E}.

Generally, Condition (7) is equivalent to the existence of a maximal event in J that is
included in a given event E ∈ D. In economics, Fukuda (2019), Salonen (2009b), and
Samet (2010) study this maximality property to obtain set-algebraic representations
of knowledge.37

In Proposition 6, since IJ defined by Equation (8) is strongly transitive and since
strong transitivity implies transitivity, the proposition also establishes the equivalence
between a collection of self-evident events and a reflexive and strongly transitive in-
formation correspondence. Example A.4 in Appendix A.7, however, shows that ↑ IJ
may not necessarily be strongly transitive even if IJ is. Thus, strong transitivity is
not necessarily preserved under the operation of taking “↑.” This also means that the
reflexive and transitive information correspondence

I :=↑ IJ , i.e., I(ω) := {E ∈ D | there is F ∈ J with ω ∈ F ⊆ E},

can also establish the part of Proposition 6 in place of Equation (8).

37In mathematical psychology, Danilov (2009) studies a collection J that is closed under arbitrary
union as a “pre-topology” when D = P(Ω).
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Doignon and Falmagne (1999, Theorem 6.25) (and Doignon and Falmagne, 1985,
Theorem 3.7) establish the correspondence between a “surmise function” and a “knowl-
edge structure” (i.e., a reflexive and transitive information correspondence and a col-
lection of self-evident events in my context) in terms of a Galois connection. This
amounts to proving: for each I and J ,

↑ I(·) ⊆↑ IJ (·) iff JI ⊆ J .

I demonstrate in Remark B.2 in Appendix B that the pair of mappings defined through
Equations (8) and (9) forms a Galois connection.

Next, consider a connection between Propositions 5 (2) and 6. If a given monotone
belief operator B satisfies Truth Axiom and Positive Introspection, then the informa-
tion correspondence IJB

= {E ∈ JB | ω ∈ B(E)} in Proposition 5 (2) is indeed equal
to IJB

= {E ∈ JB | ω ∈ E} in Proposition 6. Note that it can be seen that JB satisfies
Condition (7).

I remark on the further connections with the “knowledge space theory” of Doignon
and Falmagne (1985, 1999, 2016) and Falmagne and Doignon (2011). First, let an
information correspondence I be I(·) = {P (·)} (singleton-valued). If ω′ ∈ P (ω), then
the agent considers ω′ possible at state ω. Thus, P induces a binary relation also known
as an accessibility (or possibility) relation in computer science, logic, and philosophy
(e.g., Chellas, 1980; Fagin et al., 2003). Suppose further that P is reflexive and tran-
sitive. In mathematical psychology, if P is reflexive and transitive, then the reflexive
and transitive binary relation induced by P turns out to be a “surmise (or precedence)
relation” (Doignon and Falmagne, 1985, 1999, 2016; Falmagne and Doignon, 2011).
In their context, if ω′ ∈ P (ω), then it can be surmised from a correct response to
“question” ω that a correct response to “question” ω′ is given.

Second, suppose that I is reflexive and transitive. It turns out that the possibility
operator LI : D → D defined in Equation (3) satisfies the following three properties:

1. E ⊆ F implies LI(E) ⊆ LI(F );

2. E ⊆ LI(E); and

3. LILI(·) ⊆ LI(·).

The operator LI is related to the notion of a closure operator, and a tuple

(Ω, {E ∈ D | LI(E) ⊆ E}) = (Ω, {E ∈ D | Ec ∈ JBI})

is related to the notion of a closure space (Doignon and Falmagne, 1985, 1999; Falmagne
and Doignon, 2011).
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5 An Economic Application: Deriving Qualitative

Belief from Preferences

This section provides an economic application of information correspondences. As in
Morris (1996), this section derives an agent’s qualitative belief (or knowledge) from
her underlying preferences. When an underlying state space is infinite, her qualitative
belief may not satisfy the conjunction property for an arbitrary number of events.
While Morris (1996)’s analysis is restricted to finite state spaces, this section shows
that the agent’s qualitative belief can be derived from her preferences on an arbitrary
state space using an information correspondence.

Throughout the section, (Ω,D) is a measurable space of states of the world. For
simplicity, assume that the set of consequences is R. An act is a bounded measurable
mapping x : Ω→ R, where R is endowed with the Borel σ-algebra. Denote by B(Ω,D)
the set of acts. For any x ∈ B(Ω,D), ω ∈ Ω, and E ∈ D, denote

xω := x(ω) and xE := (x(ω))ω∈E.

Denote by z = (xE, yEc) an act that satisfies

zω = xω for all ω ∈ E and zω′ = yω′ for all ω′ ∈ Ec.

Consider an agent with preference (i.e., complete and transitive) relations (<ω)ω∈Ω

on acts B(Ω,D): x <ω y means that, at state ω, the act x is at least as good as y. The
preference relations (<ω)ω∈Ω induce a (qualitative) belief operator B< : D → D if, for
each E ∈ D,

B<(E) := {ω ∈ Ω | (xE, yEc) <ω (xE, zEc) for all x, y, z ∈ A} ∈ D.

As in Morris (1996, Theorem 2), it can be shown that B< satisfies: (i) Monotonicity,
(ii) Necessitation, and (iii) Finite Conjunction (i.e., B<(E) ∩ B<(F ) ⊆ B<(E ∩ F )).
By Monotonicity, B< can be represented by an information correspondence.38

Now, I show that, when an underlying state space is infinite, the belief operator
B< may not necessarily satisfy the Kripke property, i.e., it may not be induced by a
possibility correspondence. To see this point, the preference relations (<ω)ω∈Ω have a
(state-independent) expected utility representation if there exists a strictly increasing
and continuous utility function u : R → R and a type mapping t : Ω × D → R (as in
Section 2.2.2) such that

x <ω y iff

∫
Ω

(u ◦ x)(ω′)t(ω, dω′) ≥
∫

Ω

(u ◦ y)(ω′)t(ω, dω′).

38If Ω is finite (or more generally D is finite), then it can be shown, similarly to Morris (1996,
Theorem 1), that B< is induced by a possibility correspondence. Indeed, letting P (ω) :=

⋂
{E ∈ D |

ω ∈ B<(E)} for each ω ∈ Ω,

B<(E) = {ω ∈ Ω | P (ω) ⊆ E} for each E ∈ D.
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As a simple example, let Ω = [0, 1], and suppose that preference relations (<ω)ω∈Ω

are represented by u(t) := t for all t ∈ R and t(ω, ·) := µ for each ω ∈ Ω, where µ is
the Lebesgue measure on Ω. Then, as seen in Example 2 in Section 2.2.2, B< is not
induced by a possibility correspondence (but an information correspondence) because
the qualitative belief operator B< violates the Kripke property.

In fact, the preference relations (<ω)ω∈Ω have a (state-independent) expected utility
representation, then an event E is believed if and only if E is assigned probability one.
Hence, B< = BI , where

I(ω) := {E ∈ D | t(ω,E) = 1} for each ω ∈ Ω.

Formally:

Proposition 7. If preference relations (<ω)ω∈Ω have a (state-independent) expected
utility representation u together with a type mapping t, then the resulting belief operator
B< satisfies

B<(E) = {ω ∈ Ω | t(ω,E) = 1} for all E ∈ D.

In the proposition, the resulting belief operator B< satisfies Monotonicity, Neces-
sitation, and Countable Conjunction.39 However, it may not necessarily satisfy Truth
Axiom (e.g., B<([0, 1]∩Q) = [0, 1] in the above example, where Q is the set of rational
numbers).

6 Conclusion

This paper develops an information correspondence that represents an agent’s beliefs
about underlying states of the world. It associates, with each state, a set of possibly
multiple information sets at that state. Conceptually, it can capture beliefs that may
fail the conjunction or necessitation properties. It can also capture both qualitative and
probabilistic beliefs (e.g., knowledge and probability-one belief) in a unified manner
(e.g., Proposition 7). If it has a unique information set at each state, then it reduces
to a possibility correspondence (see Proposition 1). The paper characterizes the log-
ical, introspective, and “Belief-in” properties of beliefs, where, for instance, Belief in
Correct Belief refers to the property that the agent believes that her belief is correct
(Propositions 2, 3, and 4). As a belief representation on a state space, the only assump-
tion an information correspondence always makes is Monotonicity, as demonstrated by
the equivalence between information correspondences and monotone belief operators
(Proposition 5).

This paper connects seemingly different knowledge-belief representations by demon-
strating that a “surmise function” in mathematical psychology (Doignon and Falmagne,

39See, for instance, Fukuda (2024a), Meier (2006), and Samet (2000) for the condition on a type
mapping mapping under which the resulting probability-1 operator (i.e., B< in this context) satisfies
Positive Introspection and Negative Introspection.
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1985, 1999, 2016; Falmagne and Doignon, 2011) can be seen as a particular information
correspondence (Proposition 6). This paper thus provides various logical and introspec-
tive properties of a “surmise function.” I hope that this paper spurs further ideas in
both economics and mathematical psychology as discussed in the introduction.

One interesting direction of future study is to explore interactions of knowledge and
probabilistic beliefs, especially belief update on available information. In a standard
possibility correspondence model, an agent’s type at a state is usually the posterior
probability measure conditional on the information set at that state. It would be in-
teresting to study the agent’s beliefs when she has a collection of information sets at
a given state, especially in relation to decision theory (e.g., ambiguous beliefs). On
a related point, one can study various properties of non-additive beliefs (e.g., in the
sense of Dempster, 1967; Shafer, 1976) in the framework of this paper. Still another
direction is to develop an information correspondence on a generalized state space of
the unawareness structure developed by Heifetz, Meier, and Schipper (2006, 2013). In
their generalized state space model, a state space consists of multiple subspaces, and
a possibility correspondence on such generalized state space can represent an agent’s
unawareness satisfying certain properties. The information correspondence approach
can strip away the conjunction and necessitation properties of possibility correspon-
dences. The information correspondence approach is interesting also in the sense that
it allows for capturing probabilistic beliefs.

A Appendix

A.1 List of notations and terminologies

Table A.1 provides a list of notations and terminologies: for each key notation of
the paper, it provides the corresponding terminologies in economics and mathematical
psychology side-by-side.

A.2 Section 2.1

Proof of Proposition 1. Assume (1). Fix ω ∈ Ω, and let P (ω) be the minimum element
of I(ω). For each E ∈ D, ω ∈ BI(E) iff P (ω) ⊆ E, where the “only if” part follows
because P (ω) is the minimum element of I(ω). Conversely, assume (2). Fix ω ∈ Ω. If
E ∈ I(ω), then ω ∈ BI(E) and thus P (ω) ⊆ E. Hence, P (ω) is the minimum element
of I(ω).

A.3 Section 3.1

Proof of Proposition 2. By (a) of each property, it follows that, in (b), I satisfies a
given property if and only if ↑ I satisfies the given property. Thus, for (b), it suffices
to show that ↑ I satisfies a given property if and only if BI satisfies it.
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Notation Terminology in the Paper Corresponding Terminology
in the Knowledge Space Theory

Ω State space (Set of states Domain
of the world) (of the body of knowledge)

ω ∈ Ω State Item or question

E ∈ D Event Set of items (or questions)

J Collection of self-evident events Knowledge structure

E ∈ J Self-evident event Knowledge state

I : Ω→ P(D) Information correspondence Surmise function
(Ω, I): Surmise system

E ∈ I(ω) Information set at ω Clause (background or
foundation) for ω

ω′ ∈ P (ω) Possibility (or accessibility) Surmise relation
(I(·) = {P (·)}) relation

Table A.1: A list of notations and terminologies. The first column lists key notations
of this paper. The second does their terminologies. The third does the corresponding
terminologies in Doignon and Falmagne (1985, 1999, 2016) and Falmagne and Doignon
(2011).

1. (a) I start by showing that if Γ satisfies No-Contradiction then so does ↑ Γ by
contraposition. If ∅ ∈↑ Γ, then there is E ∈ Γ with E ⊆ ∅, i.e., ∅ ∈ Γ.
Conversely, if ∅ 6∈↑ Γ, then ∅ 6∈ Γ because Γ ⊆↑ Γ.

(b) For each ω ∈ Ω, ∅ ∈↑ I(ω) iff ω ∈ BI(∅). Thus, ∅ 6∈↑ I(ω) for all ω ∈ Ω iff
BI(∅) = ∅.

2. (a) First, assume that Γ satisfies Consistency. Suppose to the contrary that
there are E,F ∈↑ Γ such that E ∩ F = ∅. Then, there are E ′, F ′ ∈ Γ such
that E ′ ⊆ E and F ′ ⊆ F . Thus, E ′ ∩ F ′ ⊆ E ∩ F = ∅, a contradiction.
Second, if ↑ Γ satisfies Consistency then Ec 6∈↑ Γ for any E ∈↑ Γ. Third,
suppose that Ec 6∈↑ Γ for any E ∈↑ Γ. Suppose to the contrary that there
are E,F ∈ Γ with E ∩ F = ∅. Since F ⊆ Ec, it follows that E,Ec ∈↑ Γ, a
contradiction.

(b) I start by showing that if I satisfies Consistency then BI(E) ⊆ (¬BI)(Ec).
If ω ∈ BI(E) then E ∈↑ I(ω). Since Ec 6∈↑ I(ω), I have ω ∈ (¬BI)(Ec).
Conversely, assume BI(E) ⊆ (¬BI)(Ec). Take any ω ∈ Ω and E ∈↑ I(ω).
Since ω ∈ BI(E) ⊆ (¬BI)(Ec), it follows that Ec 6∈↑ I(ω).

3. (a) First, if Γ 6= ∅ then ↑ Γ 6= ∅. Second, if ↑ Γ 6= ∅, then there is E ∈↑ Γ. Since
E ⊆ Ω, it follows that Ω ∈↑ Γ. Third, if Ω ∈↑ Γ, then there is some E ∈ Γ
(with E ⊆ Ω), and thus Γ 6= ∅.

(b) The statement follows because Ω ∈↑ I(ω) for all ω ∈ Ω iff BI(Ω) = Ω.
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4. (a) Since ↑ Γ is closed under set inclusion, ↑ Γ satisfies Countable Conjunction
if and only if ↑ Γ is closed under (non-empty) countable intersection.

(b) Take any (non-empty) countable collection {Fn}n∈N ⊆ D. The statement
follows because,

⋂
n∈NBI(Fn) ⊆ BI(

⋂
n∈N Fn) iff, for any ω ∈ Ω,

if Fn ∈↑ I(ω) for all n ∈ N then
⋂
n∈N

Fn ∈↑ I(ω).

A.4 Section 3.2

Proof of Proposition 3. 1. First, I show that (1a) implies (1b). If E ∈↑ I(ω) then
there is F ∈ I(ω) with F ⊆ E. Since I is reflexive, ω ∈ F ⊆ E.

Second, I show that (1b) implies (1c). Take any E ∈ D. If ω ∈ BI(E), then
E ∈↑ I(ω), and thus ω ∈ E. Thus, BI(E) ⊆ E.

Finally, I show that (1c) implies (1a). If E ∈ I(ω) ⊆↑ I(ω), then ω ∈ BI(E) ⊆ E.

2. First, I show that (2a) implies (2b). If E ∈↑ I(ω), then there is F ∈ I(ω) such
that F ⊆ E. Then, by (2a), there is G ∈ I(ω) such that if ω′ ∈ G then there is
F ′ ∈ I(ω′) ⊆↑ I(ω′) such that F ′ ⊆ F ⊆ E.

Second, I show that (2b) implies (2c). Take ω ∈ Ω and E ∈↑ I(ω). By (2b),
there is F ∈↑ I(ω) such that if ω′ ∈ F then there is E ′ ∈↑ I(ω′) such that
E ′ ⊆ E. Then, since F ⊆ {ω′ ∈ Ω | E ∈↑ I(ω′)}, it follows that

{ω′ ∈ Ω | E ∈↑ I(ω′)} ∈↑ I(ω).

Third, I show that (2c) implies (2d). If ω ∈ BI(E), then E ∈↑ I(ω). Then, by
(2c),

{ω′ ∈ Ω | E ∈↑ I(ω′)}︸ ︷︷ ︸
=BI(E)

∈↑ I(ω), i.e., ω ∈ BIBI(E).

Finally, I show that (2d) implies (2a). Fix ω ∈ Ω and E ∈ I(ω) ⊆↑ I(ω). Then,
by (2d), ω ∈ BI(E) ⊆ BIBI(E). Thus,

{ω′ ∈ Ω | E ∈↑ I(ω′)} = BI(E) ∈↑ I(ω).

Now, there is F ∈ I(ω) such that if ω′ ∈ F then E ∈↑ I(ω′), i.e., there is
E ′ ∈ I(ω′) with E ′ ⊆ E.

3. First, I show that (3a) implies (3b). Let (ω,E) ∈ Ω×D be such that Ec∩F 6= ∅
for all F ∈↑ I(ω). Since I(ω) ⊆↑ I(ω) and since I(ω) is Euclidean, there is
F ′ ∈ I(ω) ⊆↑ I(ω) such that if ω′ ∈ F ′ then Ec ∩ F 6= ∅ for all F ∈↑ I(ω′).
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Second, I show that (3b) implies (3c). Suppose E 6∈↑ I(ω). Then, Ec ∩ F 6= ∅
for all F ∈↑ I(ω). Then, by (3b), there is F ′ ∈↑ I(ω) such that

F ′ ⊆ {ω′ ∈ Ω | E 6∈↑ I(ω′)}.

Then, {ω′ ∈ Ω | E 6∈↑ I(ω′)} ∈↑ I(ω).

Third, I show that (3c) implies (3d). If ω ∈ (¬BI)(E), then E 6∈↑ I(ω). Then,
by (3c),

{ω′ ∈ Ω | E 6∈↑ I(ω′)}︸ ︷︷ ︸
=(¬BI)(E)

∈↑ I(ω), i.e., ω ∈ BI(¬BI)(E).

Finally, I show that (3d) implies (3a). Let (ω,E) ∈ Ω×D be such that Ec∩F 6= ∅
for all F ∈ I(ω). Since E 6∈↑ I(ω), it follows that ω ∈ (¬BI)(E). It follows from
(3d) that ω ∈ (¬BI)(E) ⊆ BI(¬BI)(E), i.e.,

{ω′ ∈ Ω | E 6∈↑ I(ω′)} ∈↑ I(ω).

Thus, there is F ′ ∈ I(ω) such that if ω′ ∈ F then E 6∈↑ I(ω′), i.e., Ec ∩ F 6= ∅
for all F ∈ I(ω′).

4. First, I show that (4a) implies (4b). Fix (ω,E) ∈ Ω×D. Suppose that, for any
F ∈↑ I(ω), there is ω′ ∈ F with E ∈↑ I(ω′). Then, for any F ∈ I(ω), there are
ω′ ∈ F and F ′ ∈ I(ω′) with F ′ ⊆ E. By (4a), ω ∈ E.

Second, I show that (4b) implies (4c). Fix E ∈ D. If ω ∈ (¬BI)(¬BI)(E), then
for any F ∈↑ I(ω), F 6⊆ (¬BI)(E), i.e., there are ω′ ∈ F and E ∈↑ I(ω′). By
(4b), ω ∈ E. Thus, (¬BI)(¬BI)(E) ⊆ E.

Finally, I show that (4c) implies (4a). Fix (ω,E) ∈ Ω × D. Suppose that, for
any F ∈ I(ω), there are ω′ ∈ F and F ′ ∈ I(ω′) with F ′ ⊆ E. Thus, for any
F ∈ I(ω), F 6⊆ (¬BI)(E). By (4c), ω ∈ (¬BI)(¬BI)(E) ⊆ E.

Proof of Corollary 1. First, I show below that I is reflexive. Second, then, as men-
tioned in the main text, since I is symmetric and transitive, it is Euclidean. Third,
Negative Introspection (i.e., Euclideanness), Truth Axiom (i.e., reflexivity), and Mono-
tonicity of BI imply Necessitation and Countable Conjunction (Fukuda, 2019, Corol-
lary 1). Then, all the other properties follow.

Hence, I show that I is reflexive, i.e., BI satisfies Truth Axiom:

BI(E) ⊆ BIBI(E) ⊆ (¬BI)(¬BI)(E) ⊆ E.

The first set inclusion follows follows from Positive Introspection, the second from
Consistency, and the third from Symmetry. (One can also prove the reflexivity of I
directly from the definition in terms of I.)
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Example A.1. I provide an example where I is not strongly transitive but transi-
tive. I define a reflexive and transitive information correspondence. Let (Ω,D) =
({ω1, ω2, ω3},P(Ω)). Define I : Ω→ P(D) as

I(ω) =

{
{{ω1, ω3}} if ω ∈ {ω1, ω3}
{{ω2}, {ω1, ω2}} if ω = ω2

.

By construction, I is reflexive.
To see that I is not strongly transitive, take E = {ω1, ω2} ∈ I(ω2) and ω1 ∈ E.

Then, {ω1, ω3} ∈ I(ω1) and {ω1, ω3} 6⊆ E = {ω1, ω2}. It can be seen, however, that I is
transitive. This can also be verified by the fact that BI satisfies Positive Introspection:

BI(E) =


∅ if E ∈ {∅, {ω1}, {ω3}}
{ω2} if E ∈ {{ω2}, {ω1, ω2}, {ω2, ω3}}
{ω1, ω3} if E = {ω1, ω3}
Ω if E = Ω

. (A.1)

Two additional remarks are in order. First, observe that I satisfies the Kripke
property. Thus, consider I ′(·) = {P (·)}, where

P (ω1) = {ω1, ω3}, P (ω2) = {ω2}, and P (ω3) = {ω1, ω3}.

Now, I ′ is strongly transitive.
Second, BI satisfies all the four logical properties defined in Section 3.1. Also, BI

satisfies all the four introspective properties defined in Section 3.2 (it satisfies all the
“Belief-in” properties in Section 3.3 as well).

Example A.2. I provide an example where I is strongly transitive but ↑ I is not as
in Example A.1. Let (Ω,D) = ({ω1, ω2, ω3},P(Ω)). Define I : Ω→ P(D) as follows:

I(ω) =

{
{{ω1, ω3},Ω} if ω ∈ {ω1, ω3}
{{ω2},Ω} if ω = ω2

. (A.2)

First, I show that I is strongly transitive. Let ω ∈ Ω, E ∈ I(ω), and ω′ ∈ E. There is
F = E ∈ I(ω′) such that F ⊆ E. Second, ↑ I is written as follows:

↑ I(ω) =

{
{{ω1, ω3},Ω} if ω ∈ {ω1, ω3}
{{ω2}, {ω2, ω3},Ω} if ω = ω2

. (A.3)

Third, I show that ↑ I is not strongly transitive. Take E = {ω2, ω3} ∈ I(ω2) and
ω3 ∈ E. Then, {ω1, ω3} 6⊆ {ω2, ω3} = E and Ω 6⊆ {ω2, ω3} = E. I remark that, since
I is transitive, it follows from Proposition 3 that ↑ I is transitive. I also remark that
the belief operator BI in this example coincides with that defined by Equation (A.1)
in Example A.1.
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A.5 Section 3.3

Proof of Proposition 4. 1. First, I show that (1a) implies (1b). Take (ω,E) ∈ Ω×D.
There is F ∈ I(ω) ⊆↑ I(ω) with the following property: if ω′ ∈ F and E ∈↑ I(ω′)
then F ′ ∈ I(ω′) for some F ′ ⊆ E. Then, ω′ ∈ E.

Second, I show that (1b) implies (1c). Take (ω,E) ∈ Ω × D. By (1b), there is
F ∈ I(ω) such that F ⊆ (¬BI)(E) ∪ E. Thus, ω ∈ BI((¬BI)(E) ∪ E), and
hence

Ω = BI((¬BI)(E) ∪ E).

Finally, I show that (1c) implies (1a). Take any (ω,E) ∈ Ω×D. Since

ω ∈ Ω = BI((¬BI)(E) ∪ E),

there is F ∈ I(ω) such that F ⊆ (¬BI)(E) ∪ E. If ω′ ∈ F and if there is
F ′ ∈ I(ω′) with F ′ ⊆ E, then ω′ ∈ BI(E) implies ω′ ∈ E.

2. First, I show that (2a) implies (2b). Fix (ω,E) ∈ Ω×D. There is F ∈ I(ω) ⊆↑
I(ω) with the following property: if ω′ ∈ F and if E ∈↑ I(ω′) and thus F ′ ∈ I(ω′)
with F ′ ⊆ E, then H ∩ E 6= ∅ for all H ∈↑ I(ω′). Thus, Ec 6∈↑ I(ω′).

Second, I show that (2b) implies (2c). Fix E ∈ D, and take ω ∈ Ω. I show that

¬(BI(E) ∩BI(Ec)) = (¬BI)(E) ∪ (¬BI)(Ec) ∈↑ I(ω).

By (2b), there is F ∈↑ I(ω) such that if ω′ ∈ F and if ω′ ∈ BI(E) then ω′ ∈
(¬BI)(Ec). Thus, F ⊆ ¬(BI(E) ∩BI(Ec)). Hence,

¬(BI(E) ∩BI(Ec)) ∈↑ I(ω).

Finally, I show that (2c) implies (2a). Fix (ω,E) ∈ Ω×D. Since

ω ∈ Ω = BI(¬(BI(E) ∩BI(Ec))),

there is F ∈ I(ω) such that F ⊆ ¬(BI(E) ∩ BI(Ec)). Thus, if ω′ ∈ F and if
there is F ′ ∈ I(ω′) with F ′ ⊆ E, then ω′ ∈ (¬BI)(Ec). Thus,

H ∩ E 6= ∅ for all H ∈ I(ω′).

3. First, I show that (3a) implies (3b). For any (ω,E, F ) ∈ Ω × D × D, there is
G ∈ I(ω) ⊆↑ I(ω) such that if ω′ ∈ G, E ∈↑ I(ω′), and if (¬E) ∪ F ∈↑ I(ω′),
then (3a) implies that F ∈↑ I(ω′).

Second, I show that (3b) implies (3c). Fix E,F ∈ D and ω ∈ Ω. There is
G ∈↑ I(ω) such that if ω′ ∈ G, ω′ ∈ BI(E), and if ω′ ∈ BI((¬E) ∪ F ), then
ω′ ∈ BI(F ). Thus, G ⊆ ¬(BI(E) ∩BI((¬E) ∪ F )) ∪BI(F ). Hence,

ω ∈ BI(¬(BI(E) ∩BI((¬E) ∪ F )) ∪BI(F )).
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Finally, I show that (3c) implies (3a). Take (E,F ) ∈ D2 and

ω ∈ Ω = BI(¬(BI(E) ∩BI((¬E) ∪ F )) ∪BI(F )).

There is G ∈ I(ω) such that:

if ω′ ∈ G then ω′ ∈ ¬(BI(E) ∩BI((¬E) ∪ F )) ∪BI(F ).

If ω′ ∈ G, E ′ ∈ I(ω′) for some E ′ ⊆ E, and if F ′ ∈ I(ω′) for some F ′ ⊆ (¬E)∪F ,
then ω′ ∈ BI(F ), i.e., there is G′ ∈ I(ω′) with G′ ⊆ F .

4. Throughout the proof, take {Fn}n∈N ∈ P(D). First, I show that (4a) implies
(4b). Fix ω ∈ Ω. By (4a), there is G ∈ I(ω) ⊆↑ I(ω) such that if ω′ ∈ G and if
{Fn}n∈N ⊆↑ I(ω′), then there is EF ∈ I(ω′) with EF ⊆ Fn for each n ∈ N. Thus,

there is G′ ∈ I(ω′) ⊆↑ I(ω′) such that G′ ⊆
⋂
n∈N

Fn.

Second, I show that (4b) implies (4c). For each ω ∈ Ω, by (4b), there is G ∈↑ I(ω)
such that G ⊆ ¬(

⋂
n∈NBI(Fn)) ∪BI(

⋂
n∈N Fn). Hence,

ω ∈ BI

(
¬(
⋂
n∈N

BI(Fn)) ∪BI(
⋂
n∈N

Fn)

)
.

Finally, I show that (4c) implies (4a). Take

ω ∈ Ω = BI

(
¬(
⋂
n∈N

BI(Fn)) ∪BI(
⋂
n∈N

Fn)

)
.

There is G ∈ I(ω) such that if ω′ ∈ G and if Fn ∈ I(ω′) ⊆↑ I(ω′) for each n ∈ N,
then ω′ ∈ BI(

⋂
n∈N Fn). Thus,

there is G′ ∈ I(ω′) with G′ ⊆
⋂
n∈N

Fn.

Example A.3. Let (Ω,D) = ({ω1, ω2, ω3},P(Ω)). Define I : Ω→ P(D) as follows:

I(ω) =


{{ω1, ω2}, {ω2, ω3}} if ω = ω1

{{ω2}} if ω = ω2

{∅} if ω = ω3

.
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The belief operator BI is given as follows:

BI(E) =


{ω3} if E ∈ {∅, {ω1}, {ω3}, {ω1, ω3}}
{ω2, ω3} if E = {ω2}
Ω if E ∈ {{ω1, ω2}, {ω2, ω3},Ω}

.

The operator BI violates No-Contradiction because ∅ ∈ I(ω3). In fact, BI(∅) = {ω3}.
Consequently, it violates Truth Axiom and Consistency (indeed, BI(E) ∩ BI(Ec) =
{ω3} for any E ∈ D). The operator violates Countable Conjunction:

BI({ω1, ω2}) ∩BI({ω2, ω3}) = Ω 6⊆ {ω2, ω3} = BI({ω2}).

In contrast, it can be seen that I is secondary reflexive and secondary serial. It also
satisfies Belief in Countable Conjunction and consequently Belief in Perfect Reasoning.

A.6 Section 4.1

Proof of Proposition 5. 1. By Propositions 2, 3, and 4, BI satisfies the logical, in-
trospective, and “Belief-in” properties of beliefs imposed on I. Next,

IBI(ω) = {E ∈ D | ω ∈ BI(E)}
= {E ∈ D | E ∈↑ I(ω)} =↑ I(ω) for all ω ∈ Ω.

Since BI is monotone, ↑ IBI(·) = IBI(·) =↑ I(·).
Conversely,

BIB(E) = {ω ∈ Ω | E ∈↑ IB(ω)} = B(E) for each E ∈ D.

By Propositions 2, 3, and 4, any generator I of B satisfies the logical, introspec-
tive, and “Belief-in” properties of beliefs imposed on B.

As argued in the main text,

I(·) ⊆↑ I(·) =↑ IB(·) = IB(·).

2. First, I show that IJB
is an information correspondence that generates B, i.e.,

B = BIJB
.

Take E ∈ D and ω ∈ B(E). Since ω ∈ B(E) ⊆ BB(E), it follows that B(E) ∈
IJB

(ω) and E ∈↑ IJB
(ω). Thus, ω ∈ BIJB

(E). Conversely, if ω ∈ BIJB
(E) then

there is F ∈ IJB
(ω) with ω ∈ F ⊆ E. Then, ω ∈ F ⊆ B(F ) ⊆ B(E).

Second, IJB
is by construction reflexive.

Third, I show that IJB
is (strongly) transitive. Let E ∈ IJB

(ω), i.e., ω ∈ E =
B(E). If ω′ ∈ E then there is E ′ = E ∈ IJB

(ω′) such that E ′ ⊆ E.
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A.7 Section 4.2

Proof of Proposition 6. 1. (a) Let J satisfy Condition (7). First, I show that IJ
is an information correspondence. For each E ∈ D,

{ω ∈ Ω | there is F ∈ IJ (ω) such that F ⊆ E}
={ω ∈ Ω | there is F ∈ J such that ω ∈ F ⊆ E} ∈ J ⊆ D.

Second, IJ is reflexive by construction.

Third, I show that IJ is (strongly) transitive. For any E ∈ IJ (ω) and
ω′ ∈ E, E ′ = E ∈ IJ (ω′) satisfies ω′ ∈ E ′ ⊆ E.

(b) Suppose Ω ∈ J . For any ω ∈ Ω, one has Ω ∈ IJ (ω) and thus IJ (ω) 6= ∅.

2. (a) Conversely, I show that JI satisfies Condition (7). For each E ∈ D, let

BJI(E) := {ω ∈ Ω | there is F ∈ JI such that ω ∈ F ⊆ E}.

I show that BJI(E) ∈ JI , i.e.,

if ω ∈ BJI(E), then there is F ′ ∈ I(ω) such that F ′ ⊆ BJI(E).

Let ω ∈ BJI(E). There is F ∈ JI such that ω ∈ F ⊆ E. Since ω ∈ F , there
is E ′ ∈ I(ω) such that E ′ ⊆ F . Since I is transitive, there is F ′ ∈ I(ω) such
that if ω′ ∈ F ′ then there is G ∈ I(ω′) such that ω′ ∈ G ⊆ E ′ ⊆ F ⊆ E.
Thus, ω′ ∈ BJI(E). Hence, F ′ ⊆ BJI(E), as desired.

(b) If I(·) 6= ∅, then for any ω ∈ Ω, there is F ∈ I(ω) such that F ⊆ Ω. Thus,
Ω ∈ JI .

3. (a) Next, let E ∈ J . For any ω ∈ E, I have E ∈ IJ (ω) and E ⊆ E. Thus,
E ∈ JIJ . Conversely, if E ∈ JIJ , then

E = {ω ∈ Ω | there is F ∈ IJ (ω) such that F ⊆ E}
= {ω ∈ Ω | there is F ∈ J such that ω ∈ F ⊆ E} ∈ J .

(b) Finally, let I be given. Fix ω ∈ Ω. First, I show

↑ IJI(ω) ⊆↑ I(ω).

If E ∈ IJI(ω), then ω ∈ E ∈ JI . Thus, E ∈↑ I(ω). This implies IJI(ω) ⊆↑
IJI(ω) ⊆↑ I(ω).

Conversely, I show
↑ I(ω) ⊆↑ IJI(ω).

Suppose that E ∈↑ I(ω). Since I is transitive,

E ′ := {ω′ ∈ Ω | E ∈↑ I(ω′)} ∈↑ I(ω).
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Thus, there is F ∈ I(ω) such that F ⊆ E ′. Since I is reflexive, ω ∈ F ⊆ E ′.
If ω′ ∈ E ′ then ω′ ∈ {ω′′ ∈ Ω | E ′ ∈↑ I(ω′′)}. That is, if ω′ ∈ E ′ then
there is G ∈ I(ω′) such that G ⊆ E ′. Thus, E ′ ∈ JI . Since ω ∈ E ′, I have
E ′ ∈ IJI(ω). Since I is reflexive, E ′ ⊆ E. This is because, for any ω′ ∈ E ′,
it follows from E ∈↑ I(ω′) and the reflexivity of I (and hence ↑ I) that
ω′ ∈ E. Thus, E ∈↑ IJI(ω), as desired.

Example A.4. Consider the belief operator B defined by Equation (A.1) in Example
A.1. Let

J := JB = {∅, {ω2}, {ω1, ω3},Ω}.

The information correspondence IJ coincides with Equation (A.2) in Example A.2.
Then, ↑ IJ coincides with Equation (A.3) in Example A.2. The arguments in Example
A.2 show that, while IJ is strongly transitive, ↑ IJ is not.

A.8 Section 5

Proof of Proposition 7. First, the “⊇” part follows because, if t(ω,E) = 1 then∫
Ω

(u ◦ (xE, yEc))(ω′)t(ω, dω′) =

∫
E

(u ◦ x)(ω′)t(ω, dω′)

=

∫
Ω

(u ◦ (xE, zEc))(ω′)t(ω, dω′) for any x, y, z ∈ B(Ω,D).

Second, for the “⊆” part, suppose to the contrary that ω ∈ B<(E) and t(ω,E) < 1.
Choose x, y, z ∈ B(Ω,D) such that y(ω) = a < b = z(ω) for all ω ∈ Ω. Then,∫

Ω

(u ◦ (xE, yEc))(ω′)t(ω, dω′) <

∫
Ω

(u ◦ (xE, zEc))(ω′)t(ω, dω′),

a contradiction.

B Additional Results

In this Appendix, Remark B.1 formalizes the equivalence between information corre-
spondences and monotone belief operators (studied in Section 4.1) formally as a Galois
connection. Remark B.2 formalizes the equivalence between reflexive and transitive in-
formation correspondences and self-evident collections (studied in Section 4.2) formally
as a Galois connection.

Formally, letting (X,≤X) and (Y,≤Y ) be a pre-ordered set (where a pre-order is
a reflexive and transitive relation), a pair of order-preserving maps α : X → Y and
β : Y → X is a Galois connection if the following holds:

x ≤X β(y) iff α(x) ≤Y y for all (x, y) ∈ X × Y.
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Remark B.1. I formulate the equivalence between information correspondences and
monotone belief operators in Proposition 5 as a Galois connection. To that end, let
(I,≤I) be the collection of information correspondences on a state space (Ω,D) with
the following pre-order: I ≤I I ′ if and only if the following holds:

for each ω ∈ Ω and E ∈ I(ω), there is F ∈ I ′(ω) such that F ⊆ E.

In other words, ↑ I(·) ⊆↑ I ′(·). Let (B,≤B) be the collection of monotone belief
operators from D into itself, and B ≤B B

′ if and only if B(·) ⊆ B′(·).
Let α : (I,≤I)→ (B,≤B) be such that

α(I) = BI

defined as in Equation (2). I show that α is order-preserving. If I ≤I I ′ then ↑ I ≤I↑ I ′
and thus BI ≤B BI′ by Equation (2).

Next, let β : (B,≤B)→ (I,≤I) be

β(B) = IB

as in Equation (6). By construction, β is order-preserving, i.e., if B ≤B B′ then
IB ≤I IB′ .

Now, I show that (α, β) is a Galois connection, that is, the order-preserving maps
α and β on the pre-ordered spaces satisfy

I ≤I β(B) if and only if α(I) ≤B B for any (I, B) ∈ I× B.

Indeed, if α(I) ≤B B then I = IBI ≤I IB = β(B). Conversely, if I ≤I β(B) then
α(I) = BI ≤B BIB = B.

Remark B.2. Let (Irt,≤rt) be the collection of reflexive and transitive information
correspondences with the following pre-order as in Remark B.1: I ≤rt I ′ if and only if
the following holds:

for each ω ∈ Ω and E ∈ I(ω), there is F ∈ I ′(ω) such that F ⊆ E.

In other words, ↑ I(·) ⊆↑ I ′(·). Let (J,⊆) be the space consisting of collections of
events J (∈ P(D)) satisfying Condition (7).

Define α : (Irt,≤rt)→ (J,⊆) by

α(I) = JI

as in Equation (9). I show that the mapping α is order-preserving. Let I ≤rt I ′, and
take E ∈ JI . If ω ∈ E then there is F ′ ∈ I ′(ω) such that F ′ ⊆ E. Thus, E ∈ JI′ .

Next, define β : (J,⊆)→ (I,≤rt) by

β(J ) = IJ
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as in Equation (8). I show that β is order-preserving. If J ⊆ J ′, then IJ (·) ⊆ IJ ′(·).
This implies IJ ≤rt IJ ′ .

Now, I establish (α, β) is a Galois connection, that is,

I ≤rt β(J ) if and only if α(I) ⊆ J for any (I,J ) ∈ Irt × J.

If I ≤rt β(J ) = IJ then α(I) ⊆ α ◦ β(J ) = JIJ = J . Conversely, if α(I) ⊆ J then
I ≤rt β(J ) because ↑ I =↑ IJI ≤rt↑ IJ .
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