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Abstract

A p-belief operator is a convenient tool in representing agents’ higher-order
beliefs. It maps an event E to the event that an agent believes E with prob-
ability at least p. By iterating agents’ p-belief operators, the analysts can
unfold one’s beliefs about another’s without explicitly constructing beliefs over
the space of beliefs. This paper first provides the conditions under which an
agent’s p-belief operators induce her underlying beliefs at each state of the
world, i.e., her type mapping, without any underlying assumption on beliefs.
Then, the paper shows that p-belief operators alone can be a primitive of an
interactive belief model for a wide variety of non-additive beliefs. The represen-
tations include Choquet and Dempster-Shafer beliefs. Finally, since this paper
allows for a wide variety of interactive non-additive belief models, the paper
discusses possible applications such as: common p-beliefs, the existence of a
terminal non-additive belief space, and non-additive conditional beliefs.
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1 Introduction

In economic theory, the outside analysts often represent agents’ quantitative beliefs
by the notion of a type mapping. Consider an agent, Alice, who faces uncertainty
about underlying states of the world. At each state, her quantitative beliefs about
the underlying states are represented by a set function (usually, but not necessarily, a
countably-additive probability measure) defined on a collection of events (i.e., subsets
of states of the world). Call the set function the type at the prevailing state. It assigns
a degree of her belief (for ease of terminology, call it probability) to each event. Alice’s
type mapping dictates her beliefs at every state: it associates, with each state, her
type (her probabilistic beliefs) at the prevailing state.

Now, suppose that Alice and Bob are interactively reasoning about what they
believe at each state. In such an interactive situation, a notion of p-belief operators
(Friedell, 1969; Monderer and Samet, 1989) is a convenient tool to analyze interactive
beliefs of such form as: Alice p-believes (i.e., she believes with probability at least
p) that Bob q-believes (i.e., he believes with probability at least q) that some event
obtains at a state. Alice’s p-belief operator assigns, with each event E, the event that
she p-believes E.

By iterating agents’ p-belief operators, the outside analysts can unpack hierarchies
of interactive beliefs of the above form without explicitly constructing higher-order
beliefs such as Alice’s beliefs on the space of Bob’s beliefs. Especially, unlike the type-
mapping approach, p-belief operators represent, in a tractable way, an approximate
notion of common knowledge (Aumann, 1976; Friedell, 1969) referred to as common
p-belief (or common certainty as a special case of p = 1) (Brandenburger and Dekel,
1987; Monderer and Samet, 1989): Alice and Bob p-believes an event E, they p-
believe that they p-believe E, and so forth ad infinitum.1 For example, common
p-beliefs play a crucial role in the agreeing-to-disagree and no-trade theorems and the
existence of a common prior.2

Now, if the analysts start with agents’ p-belief operators as a primitive, then can
they recover the agents’ type mappings? Samet (2000) establishes the equivalence
between an agent’s type mapping and her collection of p-belief operators when her
beliefs are countably additive (Gaifman (1988) also establishes a related result). Zhou
(2010) provides the equivalence when agents’ beliefs are finitely additive.

The purpose of this paper is to demonstrate that, for an arbitrary notion of

1Generally, there are two channels through which common knowledge is approximated. One
is the number of iteration of reasoning. Rubinstein (1989) shows that strategic behavior under an
arbitrarily long finite level of mutual knowledge may be different from that under common knowledge.
The other is the approximation of knowledge by probabilistic beliefs. In a standard model in which
agents possess countably-additive introspective beliefs, the approximate notion of common p-beliefs
converges to common knowledge when probability p tends to one. As discussed, this paper relaxes
countable additivity of beliefs.

2Pioneering papers include: Aumann (1976), Heifetz (2006), Milgrom and Stokey (1982), Mon-
derer and Samet (1989), Morris (1994), Neeman (1996a,b), and Sonsino (1995).
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beliefs that can be represented by a type mapping on an underlying state space,
p-belief operators can in fact be a primitive of an interactive belief model (Theorem
1 in Section 4.1). Having the p-belief operator representation of an interactive belief
model opens up a wide range of applications in epistemic game theory including
epistemic analyses of game-theoretic solution concepts and the agreeing-to-disagree
and no-trade theorems. One of the applications of this paper (Proposition 5 in Section
5.2) is to assert the existence of a terminal Harsanyi (1967-1968) belief space (e.g.,
Armbruster and Böge, 1979; Böge and Eisele, 1979; Brandenburger and Dekel, 1993;
Heifetz and Samet, 1998; Mertens and Zamir, 1985) when beliefs are non-additive
(not-necessarily-additive): a terminal belief space is a belief space to which, for any
given belief space, there exists a unique structure-preserving map from the given
space.

To obtain the main result of the paper on the foundation side, Proposition 2 (in
Section 3.3) provides conditions on p-belief operators under which they induce a given
type mapping. Then, Theorem 1 characterizes various non-additive beliefs in terms
of p-belief operators property by property. This paper allows the outside analysts to
scrutinize agents’ interactive beliefs through p-belief operators based on their choice
of agents’ logical abilities.

Specifically, for given properties of beliefs (that are represented as the correspond-
ing properties on a type mapping), I provide the corresponding conditions on a col-
lection of p-belief operators under which the underlying type mapping is recovered.
Examples of non-additive beliefs include: general non-additive measures (Choquet
(1954) capacities), Dempster-Shafer beliefs (Dempster, 1967; Shafer, 1976), and pos-
sibility measures (Dubois and Prade, 1988; Zadeh, 1978).3 Since I analyze properties
of quantitative beliefs property by property, I also allow non-monotonic beliefs (i.e.,
an agent can fail to believe some of the consequences of her beliefs). In fact, the main
results go through when the agent has conditional beliefs, a set of beliefs based on
conditioning events (Section 5.3). Thus, the paper also extends the equivalence of
conditional type mappings and conditional p-belief operators by Di Tillio, Halpern,
and Samet (2014).

On the applications side, the main result of the paper provides foundations for
epistemic characterizations of game-theoretic solution concepts when agents’ beliefs
are non-additive and the possibility of agreeing-to-disagree and speculative trade.
Since each of these topics may require a separate paper, this paper instead formulates
the notion of common p-belief (Section 5.1) and shows the existence of a terminal non-
additive belief space (Section 5.2). Also, Section 2 studies a variant of Rubinstein
(1989)’s e-mail game with non-additive beliefs.

This paper is organized as follows. The rest of the Introduction discusses the re-

3See also Halpern (2017) and Wang and Klir (2010) for surveys on general set functions. In deci-
sion and game theory, the seminal papers on the use of Choquet capacity are Schmeidler (1986, 1989).
Ghirardato (2001) and Mukerji (1997) link Dempster-Shafer beliefs and probabilistic ignorance in
their decision theoretic frameworks.
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lated literature. Section 2 studies Rubinstein (1989)’s e-mail game with non-additive
beliefs. Section 3 sets up the model, and presents the main result (Theorem 1) on the
one-to-one correspondence between a type mapping and p-belief operators. With the
main result in mind, Section 4 studies various properties of probabilistic beliefs. Sec-
tion 5 discusses applications. Specifically, Section 5.1 incorporates common p-beliefs.
Section 5.2 constructs a terminal belief space. Section 5.3 extends the analyses to
conditional beliefs. Section 6 provides concluding remarks. The proofs are mostly
relegated to Appendix A.

Related Literature

This paper is related to the following three strands of literature: (i) the construction
of a terminal belief space; (ii) representations of higher-order beliefs through belief
operators; and (iii) applications of non-additive beliefs to game theory (e.g., epistemic
analyses of solution concepts and the agreeing-to-disagree and no-trade theorems).

First, capturing agents’ beliefs by p-belief operators plays important roles when
the outside analysts represent agents’ infinite regress in their beliefs. I have already
discussed approximate notions of common knowledge. A terminal belief space, which
contains all conceivable hierarchies of interactive beliefs, may also be used to provide
epistemic characterizations of game-theoretic solution concepts or to study strategic
impacts of higher-order beliefs.

Heifetz and Samet (1998) construct, using p-belief operators, a terminal type space
that contains any conceivable form of agents’ hierarchies of countably-additive beliefs.
Meier (2006) extends their result to the case where agents posses finitely-additive be-
liefs. This paper entirely relaxes the standard assumptions that individuals’ beliefs
are countably (or finitely) additive. As Fukuda (2024b) constructs a terminal space
when agents’ qualitative beliefs (or knowledge) are given by arbitrary belief oper-
ators, this paper establishes the existence of a terminal belief space when agents’
beliefs take a specific form of non-additive beliefs such as Choquet capacities and
Dempster-Shafer beliefs.4 Chen (2010), Di Tillio (2008), Epstein and Wang (1996),
and Ganguli, Hiefetz, and Lee (2016) construct a terminal preference space, i.e., a
canonical representation of interactive beliefs where agents are non-expected-utility
maximizers, by formulating a type mapping that generates interactive preferences.5

Second, agents’ beliefs are syntactically represented in a logical system in interdis-
ciplinary literature ranging in computer science and artificial intelligence, economics
and game theory, and logic and philosophy. There, agents’ beliefs surrounding a basic

4When the analysts work explicitly on the hierarchies of higher-order beliefs, the existence of a
terminal space is non-trivial especially because the analysts often utilize a measure-theoretic and
topological apparatus such as Kolmogorov Extension Theorem (see, for example, Brandenburger and
Dekel, 1993; Pintér, 2005, 2012). The logical construction pioneered by Heifetz and Samet (1998)
does not utilize a topological structure on an underlying uncertainty space or spaces dictating higher-
order beliefs.

5Ahn (2007) constructs a terminal ambiguous-belief space.
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uncertainty space, their beliefs about their beliefs, and so on, are explicitly modeled
as logical formulas. One such syntactic representation of interactive beliefs incorpo-
rates statements of the form “Alice p-believes a proposition e.” Such papers as Fagin
and Halpern (1994), Heifetz and Mongin (2001), and Meier (2012) study sound-and-
complete axiomatizations of probability logics in which agents’ beliefs are countably
additive. Zhou (2010) studies finitely-additive beliefs. Fagin, Halpern, and Megiddo
(1990) consider a probability logic where an agent’s beliefs are dictated by the inner
measure induced from a probability measure.6 While this paper takes a purely se-
mantic (i.e., set-theoretical) approach whereby agents’ beliefs are represented over a
set of states of the world, it provides p-belief operator representations of various prop-
erties of agents’ quantitative beliefs property by property, and thereby sheds light on
a logical representation of agents’ non-additive beliefs.

Third, while the literature on epistemic analyses of game-theoretic solution con-
cepts such as various forms of rationalizability and Nash and correlated equilibria
mainly focuses on the case in which agents’ beliefs are countably additive, there
are innovative papers at the intersection of decision and game theory that study
the role of additivity. While it would be impossible to cite all papers that study
the role of additivity of beliefs in epistemic game theory, earlier papers that study
game-theoretic solution concepts under non-additive beliefs broadly construed in-
clude Dow and Werlang (1994), Eichberger and Kelsey (2000) (see also Eichberger
and Kelsey, 2014), Epstein (1997), Groes et al. (1998), Haller (2000), Lo (1996,
1999, 2002), Marinacci (2000), and Salo and Weber (1995). Earlier papers that show
that agreeing-to-disagree or speculative trades are possible under non-additive be-
liefs broadly construed include: Billot et al. (2000), Ganguli (2007), and Kajii and
Ui (2005, 2006). Dominiak and Lefort (2015) analyze the agreement and no-trade
theorems using particular forms of non-additivity (i.e., neo-additivity, which stands
for “non-extreme-outcome-”additivity) developed by Chateauneuf, Eichberger, and
Grant (2007) and Eichberger, Grant, and Kelsey (2010) and studied by Dominiak,
Eichberger, and Lefort (2012) and Dominiak and Lefort (2013). Section 2 applies
neo-additive beliefs to Rubinstein (1989)’s e-mail game. As to epistemic characteri-
zations of game-theoretic solution concepts, Dominiak and Schipper (2021) consider
rationality and common belief in rationality among Choquet-expected-utility maxi-
mizers. This paper axiomatizes a wide variety of properties of non-additive beliefs
(which enable one to focus on a role of particular properties of non-additive beliefs),
formulates the notion of common belief, and asserts the existence of a terminal belief
space.

6Fagin and Halpern (1991) study the sense in which the inner measure can be seen as a non-
additive Dempster-Shafer belief.
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A B
A M , M 1, −L
B −L, 1 0, 0

Γa (probability 1− p)

A B
A 0, 0 1, −L
B −L, 1 M , M

Γb (probability p)

Figure 1: The Component Games: The parameters satisfy L > M > 1 and p ∈ (0, 1
2
).

2 An E-Mail Game with Non-Additive Beliefs

As a motivation to study non-additive beliefs in (epistemic) game theory, this section
considers a variant of Rubinstein (1989)’s e-mail game. I follow his setup except for
the agents’ beliefs: as it will be clear, I introduce a form of optimism that overturns
the striking result of Rubinstein (1989).

Setup of Rubinstein (1989). As in Figure 1, each of two agents has to choose
one of the binary actions A or B. With probability p ∈ (0, 1

2
), the agents play Γb;

with probability 1 − p, they play Γa. It is mutually beneficial to coordinate in both
component games, but which action to coordinate on depends on the component
game: namely, (A,A) in Γa and (B,B) in Γb. Assume L > M > 1.

Initially, while agent 1 is informed of the true game, agent 2 is not. They commu-
nicate through computers under the following protocol. If the game is Γb then agent
1’s computer automatically sends a message to agent 2’s computer; if the game is Γa
then no message is sent. If a computer receives a message then it automatically sends
a confirmation, including the confirmation of the confirmation, and so on. With a
probability ε ∈ (0, 1), any given message does not arrive at its intended destination.
If a message does not arrive then the communication stops. Each agent’s computer
records the number of messages that it has sent.

The state space consists of a pair (q1, q2) where qi is the number of messages that
agent i’s computer has sent:

Ω = {(q1, q2) ∈ (N ∪ {0})2 | q1 = q2 or q1 = q2 + 1}.

At state (q, q), agent 1 sends q messages, all of which arrive at agent 2, and the q-th
message sent by agent 2 is lost. At state (q + 1, q) agent 1 sends q + 1 messages, and
all but the last arrive at agent 2.

The prior belief µ on the state space is defined from the technological constraints of
this environment: µ is the countably-additive probability measure such that µ(ω) :=
µ({ω}) satisfies:

µ(0, 0) = 1− p;
µ(q + 1, q) = pε(1− ε)2q for any q ≥ 0 and;

µ(q + 1, q + 1) = pε(1− ε)2q+1 for any q ≥ 0.
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q1

q2

1
1

2−ε

1−ε
2−ε

1
2−ε

1−ε
2−ε

q1

q2

1−p
1−p+pε

pε
1−p+pε

1
2−ε

1−ε
2−ε

1
2−ε

1−ε
2−ε

Figure 2: The Agents’ Partitions and Type Mappings: the left panel depicts agent1’s
partition and type mapping; and the right panel depicts agent 2’s partition and type
mapping.

At each state, each agent has her (“posterior”) belief over the states. I start by
defining the information set of each agent at each state within the original setup of
Rubinstein (1989). Denote by Pi(q1, q2) the information set of agent i at (q1, q2),
where {Pi(q1, q2)}(q1,q2)∈Ω forms a partition of the state space Ω.

Agent 1 cannot distinguish between (q1, q1− 1) and (q1, q1) at a state (q1, q2) with
q1 ≥ 1. Together with P1(0, 0) = {(0, 0)}, agent 1’s partition is:

{{(0, 0)}} ∪ {{(q, q), (q, q − 1)}}q≥1.

The left panel of Figure 2 illustrates P1: each cell depicts the partition cell P1(q1, q2)
that contains (q1, q2).

Agent 2 cannot distinguish between (q2, q2) and (q2 + 1, q2) at a state (q1, q2) with
q2 ≥ 0. Thus, agent 2’s partition is:

{{(q, q), (q + 1, q)}}q≥0.

The right panel of Figure 2 illustrates P2: each cell depicts the partition cell P2(q1, q2)
that contains (q1, q2).

Letting ∆(Ω) be the set of countably-additive probability measures on Ω, denote
by

τi : Ω→ ∆(Ω)

agent i’s type mapping that associates, with each state ω, her beliefs at ω:

τi(ω)(·) := µ(· | Pi(ω)).
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Call τi(ω) agent i’s type at ω. Note that each type τi(q1, q2) assigns probability 1 to
the information set Pi(q1, q2).

For agent 1, her type at state (0, 0) is a degenerate probability measure on
P1(0, 0) = {(0, 0)}, as depicted in the left panel of Figure 2. At any other state,
as depicted the left panel of Figure 2, her type satisfies

τ1(q, q)({ω}) = τ1(q, q − 1)({ω}) =

{
1−ε
2−ε if ω = (q, q)

1
2−ε if ω = (q, q − 1)

.

For agent 2, at any state (0, 0) or (1, 0), as depicted in the right panel of Figure
2, his type satisfies

τ2(0, 0)({ω}) = τ2(1, 0)({ω}) =

{
1−p

1−p+pε if ω = (0, 0)
pε

1−p+pε if ω = (1, 0)
.

At any other state, as depicted the right panel of Figure 2, his type satisfies

τ2(q, q)({ω}) = τ2(q + 1, q)({ω}) =

{
1

2−ε if ω = (q, q)
1−ε
2−ε if ω = (q + 1, q)

.

For any subset E of Ω, the set of states at which agent i believes E with probability
1 (i.e., agent i is certain that E occurs) is:

B1
τi

(E) := {ω ∈ Ω | τi(ω)(E) ≥ 1}.

Call B1
τi

agent i’s (probability) 1-belief operator. Section 3 provides an interactive
belief model in which each agent’s collection of (probability) p-belief operators is a
primitive. As will be seen, agents’ belief operators unpack higher-order reasoning.

Since the agents interactively reason about the game that they play, denote by
G : Ω→ {Γa,Γb} the function that assigns the game that is played:

G(0, 0) = Γa and G(q1, q2) = Γb otherwise.

Then, denote by
Ga := G−1({Γa}) = {(0, 0)}

the event that the true game is Γa. Likewise, denote by

Gb := G−1({Γb}) = Ω \ {(0, 0)}

the event that the true game is Γb. Figure 3 illustrates Ga and Gb.
With these notations in mind, at any state ω = (q1, q2) at which the true game

is Γa, i.e., at ω = (0, 0), agent 1 is certain (i.e., believes with probability 1) that the
true game is Γa (i.e., the event Ga occurs) because τ1(ω)(Ga) = 1, as P1(ω) ⊆ Ga.
At any other state, i.e., at ω ∈ Gb, agent 1 is certain that the true game is Γb (i.e.,
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q1

q2

Ga = Bτ1(Ga)

Bτ1Bτ2(Gb)

Bτ2(Gb)

Gb = Bτ1(Gb)

Figure 3: Events Ga and Gb and Agents’ Interactive Reasoning through 1-Belief
Operators

the event Gb occurs) because τ1(ω)(Gb) = 1, as P1(ω) ⊆ Gb. In sum, as illustrated in
Figure 3,

B1
τ1

(Ga) = Ga and B1
τ1

(Gb) = Gb.

For agent 2, the event that he is certain that the game is Γb (i.e., the event Gb

occurs) is, as illustrated in Figure 3,

B1
τ2

(Gb) = Ω \ {(0, 0), (1, 0)}.

Thus, at each ω ∈ {(1, 0), (1, 1)}, agent 1 is not certain that agent 2 is certain of Gb.
This is because, as illustrated in Figure 3,

B1
τ1
B1
τ2

(Gb) = Ω \ {(0, 0), (1, 0), (1, 1)}.

Similarly, in each of the states (1, 1) and (2, 1), agent 2 is certain that the game is Γb
but is not certain that agent 1 is certain that agent 2 is certain that the game is Γb.
In this way, one can unpack higher-order beliefs through belief operators.

A strategy of agent i is defined as a mapping σi : Ω→ {A,B} which is measurable
with respect to her partition. That is,

σi(ω) = σi(ω
′) if ω′ ∈ Pi(ω).

Since Pi(ω) = {ω̃ ∈ Ω | τi(ω̃) = τi(ω)}, the measurability condition states that agent i
plays the same action at states she cannot distinguish based on her beliefs τi. Denote
by σ = (σ1, σ2) a strategy profile.

A strategy profile σ∗ is an equilibrium if, for any agent i and any strategy σi of
agent i,

Uτi(σ
∗ | ω) ≥ Uτi(σi, σ

∗
−i | ω) for all ω ∈ Ω,
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where, denoting by ui(· | ω̃) agent i’s component-game payoff function at state ω̃,
Uτi(σ | ω) is agent i’s expected utility from the strategy profile σ with respect to her
belief τi(ω):

Uτi(σ | ω) :=
∑
ω̃∈Ω

ui(σ(ω̃) | ω̃)τi(ω)({ω̃}).

So far, while the setup is identical to that of Rubinstein (1989), I have introduced
the agents’ type mappings and 1-belief operators to see that iterating the agents’ 1-
belief operators represents their interactive reasoning. Rubinstein (1989) shows that
the e-mail game has a unique equilibrium in which both agents always choose A.

Departure from Rubinstein (1989). Here instead, I apply “neo-additive” ca-
pacities (see Chateauneuf, Eichberger, and Grant, 2007; Dominiak and Lefort, 2013;
Eichberger, Grant, and Kelsey, 2010) to modify the type mapping τi. To that end,
first, I introduce the following “possibility measure” πi: for each state ω ∈ Ω and any
subset E of Ω,

πi(ω)(E) :=

{
0 if E ∩ Pi(ω) = ∅
1 if E ∩ Pi(ω) 6= ∅

.

At each state ω, πi(ω)(E) = 1 if and only if (hereafter, iff) agent i considers E
possible in the sense that she assigns a positive τi(ω)-probability to E. Section 4.1
studies (general) possibility measures. Then, letting δ ∈ [0, 1), I consider a new type
mapping ti, where

ti(ω)(E) := δπi(ω)(E) + (1− δ)τi(ω)(E).

Three remarks are in order. First, the case with δ = 0 corresponds to the original
Rubinstein (1989) e-mail game. Second, letting

B1
ti

(E) = {ω ∈ Ω | ti(ω)(E) ≥ 1} for each subset E of Ω,

one has
B1
ti

= B1
τi
.

Third, ti(ω)(·) := δπi(ω)(·) + (1− δ)τi(ω)(·) conforms to a “neo-additive” capacity in
the sense of Chateauneuf, Eichberger, and Grant (2007, Definition 3.3).

Agent i’s strategy σi : Ω → {A,B} is defined as before: σi(ω) = σi(ω
′) if ω′ ∈

Pi(ω). Since Pi(ω) = {ω̃ ∈ Ω | ti(ω̃) = ti(ω)}, the measurability condition states that
agent i plays the same action at states she cannot distinguish based on her beliefs ti.

A strategy profile σ∗ is an equilibrium if, for any agent i and any strategy σi of
agent i,

Uti(σ
∗ | ω) ≥ Uti(σi, σ

∗
−i | ω) for all ω ∈ Ω,
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where Uti(σ | ω) is agent i’s Choquet expected utility from the strategy profile σ with
respect to her belief ti(ω):

Uti(σ | ω) := δ max
ω̃∈Pi(ω)

ui(σ(ω̃) | ω̃) + (1− δ)
∑
ω̃∈Ω

ui(σ(ω̃) | ω̃)τi(ω)({ω̃}). (1)

As it can be seen from the first term, while δ measures the degree of ambiguity,
each agent is ambiguity-loving. Rubinstein (1989)’s original strategy profile is still an
equilibrium for any δ because if the opponent always plays A then always taking A
also maximizes the first term of agent i’s (Choquet) expected utility function. Yet, I
assert below that if δ is high enough then there exists another equilibrium in which the
agents succeed in playing B as long as both receive at least one message. Formally:

Proposition 1. If δ ≥ 1+L
M+L

, then the following strategy profile σ is an equilibrium
irrespective of ε: agent i plays σi(q1, q2) = B iff qi ≥ 1.

Before proving the claim, in this equilibrium, agent 1 plays A (resp. B) whenever
she is certain that the game is Γa (resp. Γb), and agent 2 plays A if and only if he
does not receive the first message by agent 1. In other words, the claim states that if
the agents are sufficiently optimistic then there exists an equilibrium in which each
agent i plays B iff at least one message has been received.

Proof of Proposition 1. Consider state ω = (0, 0). Observe P1(ω) = {ω}. Given
σ2(0, 0) = A, following σ1 yields the best payoff M to agent 1 at ω = (0, 0).

If agent 2 gets no message, then he is certain that either agent 1 did not send a
message or the message that agent 1 sent did not arrive. If agent 2 chooses A, then,
since agent 1 chooses A in the state (0, 0), agent 2’s Choquet expected utility is at
least (

δ + (1− δ) 1− p
1− p+ pε

)
M

whatever agent 1 chooses in the state (1, 0). If agent 2 chooses B, then his payoff is
at most

δM + (1− δ)
(

1− p
1− p+ pε

(−L) +
pε

1− p+ pε
M

)
,

where the first term comes from the fact that agent 1 plays B at the state (1, 0).
Since δ < 1, pε < 1

2
< 1 − p, and L > M > 1, it is strictly optimal for agent 2 to

choose A.
Consider ω = (q1, q2) with q1 ≥ 1. Consider agent 1’s decision when she sends q1

messages. In this case, agent 1 is uncertain whether q2 = q1 or q2 = q1 − 1. If she
chooses B, then, since agent 2 plays B when q2 = q1, agent 1’s expected payoff is at
least

δM + (1− δ)
(

1

2− ε
(−L) +

1− ε
2− ε

M

)
≥ δM + (1− δ)(−L).
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If she chooses A, then, since agent 1 is certain of Gb, her payoff is at most 1. If
δ ≥ 1+L

M+L
, then playing B by following σ1 is a best response.7

Consider ω = (q1, q2) with q2 ≥ 1. Consider agent 2’s decision when he sends q2

messages. In this case, agent 2 is uncertain whether q1 = q2 or q1 = q2 + 1. Agent 2 is
certain that the game is Gb and agent 1 plays B at ω. Thus, playing B by following
σ2 is a best response. The proof is complete.

This example shows that the consideration of non-additive beliefs may bring a
novel insight into epistemic game theory. In Rubinstein (1989), each agent i is not
certain whether her own message or the confirmation by the opponent gets astray.
Since agent i assigns a higher probability to the event that her own message has
been lost, she ends up playing A. In contrast, when agent i’s type is modulated
by the possibility measure πi, she considers it possible that her own message has
been received by the opponent. Thus, she takes into account the possibility that the
opponent, who has received a message, takes action B. When δ is high enough, this
becomes of the first-order effect.

The above argument is one possible departure from the standard expected-utility
maximization framework and there are many possible ways in which non-additivity
yields new insights. To develop an interactive belief model with non-additivity, the
rest of the paper develops an interactive belief model in which agents’ beliefs are
non-additive.

3 Representations of Non-Additive Beliefs

This section lays out the framework of the rest of the paper. Section 3.1 defines a
state space on which to represent agents’ quantitative beliefs. Sections 3.2 and 3.3
provide two representations of agents’ beliefs: a type mapping and p-belief operators.
Proposition 2 is the benchmark result establishing the equivalence between these
two representations without imposing any property on agents’ beliefs. Specifically,
it identifies the conditions on p-belief operators which recover an underlying type
mapping.

3.1 A State Space

This subsection defines a state space on which agents’ beliefs are represented. A state
space is a pair (Ω,D) where Ω is a set of states of the world and D is a subcollection

7In fact, σ1 is a best response if

δ ≥ L+ (2−M) + (M − 1)ε

M + L
.

Since M > 1, the right-hand side is increasing in ε. Thus, if δ ≥ 1+L
M+L (as in the statement of

Proposition 1), then the above condition holds irrespective of ε.
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of the power set P(Ω) about which agents reason. Call each E ∈ D an event. I
assume that D forms an algebra on Ω: (i) {∅,Ω} ⊆ D; (ii) E ∈ D implies Ec ∈ D;
and (iii) {E,F} ⊆ D implies {E ∩ F,E ∪ F} ⊆ D. First, the tautology in the form
of the entire set and the contradiction in the form of the empty set are an object of
agents’ interactive beliefs. Second, if E is an object of agents’ beliefs, then so is its
complement (negation) Ec. For ease of notation, I sometimes denote the complement
of E also by ¬E. Third, if E and F are an object of interactive beliefs, then so are
its intersection (conjunction) E ∩F and union (disjunction) E ∪F . Special cases are
when D is a σ-algebra or D = P(Ω). For example, some literature works with the
power set algebra (e.g., Dempster-Shafer beliefs and possibility beliefs).

With the state space formally defined, I move on to defining the framework for
representing agents’ interactive beliefs on a state space. For the rest of this section, fix
a state space (Ω,D). Agents are reasoning about some aspects of states Ω, and their
objects of reasoning are represented by D. In order to focus on the representation of
beliefs itself, the rest of this section focuses on a single agent.

3.2 A Type Mapping

This paper considers two representations of the agent’s beliefs. This subsection studies
the first representation: a type mapping. The type mapping t associates, with each
state ω ∈ Ω, her type t(ω). Her type t(ω) is a set function from D into [0, 1]. Denote
by [0, 1]D the collection of set functions from D into [0, 1].

Let M(Ω) be a generic subset of [0, 1]D which captures properties of the agent’s
beliefs. Thus, the specific feature of M(Ω) depends on the properties of beliefs im-
posed by the analysts. For example, if the analysts assume that the agent possesses
the standard countably-additive probabilistic beliefs on (Ω,D), then M(Ω) is the set
of countably-additive probability measures on (Ω,D). If, in contrast, the analysts
consider non-additive probability measures (precisely, capacities) µ : D → [0, 1] such
that

µ(∅) = 0 ≤ µ(E) ≤ µ(F ) ≤ 1 = µ(Ω) for any E,F ∈ D with E ⊆ F,

then M(Ω) is the set of capacities. Thus, at this point I do not explicitly add any
particular property (Section 4 studies particular properties). Instead, I consider a
generic subset M(Ω) of [0, 1]D.

Next, given M(Ω), let DM be the smallest algebra on M(Ω) including

{{µ ∈M(Ω) | µ(E) ≥ p} ∈ P(M(Ω)) | (E, p) ∈ D × [0, 1]} and (2)

{{µ ∈M(Ω) | µ(E) ≤ p} ∈ P(M(Ω)) | (E, p) ∈ D × [0, 1]}. (3)

While {µ ∈ M(Ω) | µ(E) ≥ p} is a collection of beliefs (set functions) such that the
belief in E is at least p, {µ ∈ M(Ω) | µ(E) ≤ p} is a collection of beliefs such that
the belief in E is at most p. Thus, DM is endowed with the structure which makes it

13



possible to examine whether the agent’s belief in an event E ∈ D is at least p ∈ [0, 1]
and whether her belief in E is at most p. Note that DM is equivalently generated by
sets of the form

{µ ∈M(Ω) | µ(E) ≥ p} and {µ ∈M(Ω) | µ(E) > p} for some (E, p) ∈ D × [0, 1].

Given t : Ω→M(Ω), define its dual t : Ω→ [0, 1]D by

t(·)(E) := 1− t(·)(Ec) for each E ∈ D.

If t : Ω → M(Ω), then t : (Ω,D) → (M(Ω),DM) is measurable iff so is t : (Ω,D) →
(M(Ω),DM). This is because

t
−1

({µ ∈M(Ω) | µ(E) ≥ p}) = t−1({µ ∈M(Ω) | µ(Ec) ≤ 1− p}) ∈ D and

t
−1

({µ ∈M(Ω) | µ(E) ≤ p}) = t−1({µ ∈M(Ω) | µ(Ec) ≥ 1− p}) ∈ D.

Remark 1. The algebraDM differs from the standard case in which the type mapping
t : Ω → M(Ω) associates, with each state, the corresponding countably-additive
probability measure on (Ω,D) (i.e., M(Ω) is the set of countably-additive probability
measures on (Ω,D)) as in Heifetz and Samet (1998): they introduce a σ-algebra on
M(Ω) by the one that is generated from Expression (2). Indeed, if D is a σ-algebra,
then the smallest σ-algebra that includes Expression (2) also includes Expression (3)
because

{µ ∈M(Ω) | µ(E) ≤ p} =
⋂
n∈N

{µ ∈M(Ω) | µ(E) ≥ p+
1

n
}c.

In contrast, in the case of the algebra DM , one needs to consider open measurability
(i.e., t−1({µ ∈ M(Ω) | µ(E) > p}) ∈ D) in addition to closed measurability (i.e.,
t−1({µ ∈M(Ω) | µ(E) ≥ p}) ∈ D).

With these definitions in mind, a mapping t : Ω → M(Ω) is the agent’s type
mapping if t : (Ω,D) → (M(Ω),DM) is measurable. For each state ω ∈ Ω, call
t(ω) ∈M(Ω) the agent’s type at ω. The agent p-believes an event E at a state ω if

t(ω)(E) ≥ p,

i.e., she assigns probability at least p to E according to her type at ω.
Thus, a mapping t : Ω → M(Ω) is a type mapping if, for each event E ∈ D and

probability p ∈ [0, 1], the set of states at which her type t(ω) at ω assigns probability
at least p and at most p both form an event. For each (p, E) ∈ [0, 1]×D, define

Bp
t (E) := t−1({µ ∈M(Ω) | µ(E) ≥ p}) = {ω ∈ Ω | t(ω)(E) ≥ p} ∈ D and (4)

Lpt (E) := t−1({µ ∈M(Ω) | µ(E) ≤ p}) = {ω ∈ Ω | t(ω)(E) ≤ p} ∈ D. (5)
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Thus, Bp
t (E) is the event that the agent p-believes E according to her type mapping

t, and Lpt (E) is the event that the agent assigns probability at most p to E according
to her type mapping t. Note that p-belief and dual p-belief operators Bp

t and Lpt are
each a well-defined operator from D into itself by the measurability of t.

Three remarks are in order. First, the agent’s type mapping t induces her p-belief
operators −→

Bp
t := (Bp

t )p∈[0,1]

such that each Bp
t is defined by Expression (4) through t. I will shortly introduce the

agent’s p-belief operators
−→
Bp := (Bp)p∈[0,1] as a primitive of the belief model in such

a way that the p-belief operators generate the type mapping.
Second, the agent’s type mapping t induces her dual p-belief operators

−→
Lpt := (Lpt )p∈[0,1]

(as in Heifetz and Mongin, 2001), where Lpt is defined by Expression (5) through t.

Third, the dual p-belief operators
−→
Lpt can simply be expressed from

−→
Bp
t in situations

(i) in which the agent’s beliefs are additive or (ii) in which the underlying D is a σ-
algebra. Firstly, if every t(ω) is additive (i.e., t(ω)(E) + t(ω)(Ec) = 1 for each E ∈ D
or, more concisely, t = t) as in Heifetz and Mongin (2001), then, since

t(ω)(Ec) ≥ 1− p iff t(ω)(E) ≤ p,

it follows that
Lpt (E) = B1−p

t (Ec) for each (p, E) ∈ [0, 1]×D.

Secondly, if D is a σ-algebra, then for each (p, E) ∈ [0, 1]×D,

Lpt (E) =


Ω if p = 1⋂
n∈N

(¬Bp+ 1
n

t )(E) if p ∈ [0, 1) .
8 (6)

I will set up a framework in a way such that, under the condition that one form of
belief operators induces a type mapping, the other form of belief operators is always

well-defined. In particular, if
−→
Bp induces the type mapping (which, in turn, recovers

the original p-belief operators), then
−→
Lp is also induced from

−→
Bp. Thus, I can express

some properties of beliefs that involve reasoning of the form, the agent’s belief in an

event is at most p, just from the p-belief operators
−→
Bp.

8For a given p ∈ [0, 1), let n0 ∈ N be such that p+ 1
n0
∈ [0, 1). Then, Lp

t (E) =
⋂

n≥n0
(¬Bp+ 1

n
t )(E).

If one defines Bp
t (·) = ∅ for each p > 1, then one could write Lp

t (E) =
⋂

n∈N(¬Bp+ 1
n

t )(E) for all
p ∈ [0, 1].
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3.3 A collection of p-Belief Operators

I move on to the second representation, p-belief operators: I define a collection of

p-belief operators as a primitive. The collection
−→
Bp := (Bp)p∈[0,1] of (the agent’s

p-belief) operators Bp : D → D is regular if it satisfies the following three conditions:

1. Non-negativity : B0(E) = Ω;

2. p-Continuity from Below : pn ↑ p implies Bpn(E) ↓ Bp(E);

3. Limit Measurability :
⋂

n∈N:p+ 1
n
≤1

(¬Bp+ 1
n )(E) ∈ D.

For each p ∈ [0, 1], call Bp the agent’s p-belief operator.
The agent p-believes an event E at a state ω if

ω ∈ Bp(E).

For each event E ∈ D, the set Bp(E) denotes the event that the agent p-believes E.
Non-negativity states that the agent always believes, with probability at least

zero, any event E at any state ω. The axiom of p-Continuity from Below states that,
for any increasing sequence (pn)n∈N with pn ↑ p, if the agent pn-believes an event E
at ω for all n ∈ N then she p-believes E at ω. Note that p-Continuity from Below
presupposes:

• p-Anti-Monotonicity : if p ≤ q then Bq(·) ⊆ Bp(·),

stating that Bp is non-increasing in p. Limit Measurability is a condition which allows
for capturing the dual p-belief (i.e., the agent believes an event with probability at
most p) from p-beliefs. If D is a σ-algebra, then Limit Measurability trivially holds.

For ease of exposition, let

Bp(·) := ∅ with p > 1 and Bp(·) := Ω with p < 0.

Then, Limit Measurability is written as:
⋂
n∈N(¬Bp+ 1

n )(E) ∈ D.

Similarly, the collection
−→
Lp := (Lp)p∈[0,1] of (the agent’s dual p-belief) operators

Lp : D → D is regular if it satisfies the following three conditions:

1. Unit : L1(E) = Ω;

2. p-Continuity from Above: pn ↓ p implies Lpn ↓ Lp;

3. Dual Limit Measurability :
⋂

n∈N:p− 1
n
≥0

(¬Lp−
1
n )(E) ∈ D.
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For each p ∈ [0, 1], call Lp the agent’s dual p-belief operator.
Unit states that the agent always believes, with probability at most one, any event

E at any state ω. The axiom of p-Continuity from Above states that, for any non-
increasing sequence (pn)n∈N with pn ↑ p, if the agent believes, with probability at
most pn, an event E at ω for all n ∈ N then she believes, with probability at most p,

the event E at ω. Note that
−→
Lp presupposes:

• p-Monotonicity : p ≤ q implies Lp(·) ⊆ Lq(·),

stating that Lp is non-decreasing in p. Dual Limit Measurability is a condition which
allows for capturing the p-belief (i.e., the agent believes an event with probability at
least p) from dual p-beliefs. As for Limit Measurability, if D is a σ-algebra, then Dual
Limit Measurability trivially holds.

For ease of exposition, let

Lp(·) := Ω with p > 1 and Lp(·) := ∅ with p < 0.

Then, Dual Limit Measurability is written as:
⋂
n∈N(¬Lp− 1

n )(E) ∈ D.
The main purpose of this subsection is to establish the following benchmark re-

sult by which I can characterize various forms of non-additive beliefs using p-belief
operators in Section 4. The benchmark result establishes the equivalence among
representing the agent’s beliefs by a type mapping, a regular collection of p-belief
operators, and a regular collection of dual p-belief operators.

To that end, recall that a type mapping t : (Ω,D)→ (M(Ω),DM) induces the p-

belief operators
−→
Bp
t through Expression (4). Conversely, a regular collection of p-belief

operators
−→
Bp induces a mapping tB : Ω→M(Ω) defined as follows:

tB(ω)(E) := max{p ∈ [0, 1] | ω ∈ Bp(E)} for all (p, E) ∈ [0, 1]×D. (7)

I show that the regularity conditions are the conditions that induce a well-defined
type mapping.

Proposition 2. 1. Given a type mapping t : (Ω,D)→ (M(Ω),DM), the collection

of p-belief operators
−→
Bp
t is well-defined and regular.

2. Conversely, given a regular collection
−→
Bp of p-belief operators, the mapping tB :

(Ω,D)→ (M(Ω),DM) is a well-defined type mapping.

3. Furthermore, t = tBt and
−→
Bp =

−−→
Bp
tB

.

Proposition 2 states that the regularity conditions (i.e., Non-negativity, p-Continuity
from Below, and Limit Measurability) are the conditions on p-belief operators under
which they can be a primitive of a belief model in that they induce a type mapping:

a belief model in the form of 〈(Ω,D),
−→
Bp〉 (where

−→
Bp is regular) and a belief model
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in the form of 〈(Ω,D), t〉 (where t : (Ω,D)→ (M(Ω),DM) is measurable) are equiva-
lent. Also, Proposition 2 implies that regular p-belief operators induce a unique type
mapping: for any type mappings t and t′, Proposition 2 implies that

t = t′ iff
−→
Bp =

−→
B′p,

where
−→
B′p corresponds to t′.

In fact, one can establish the one-to-one correspondence between a type mapping
and dual p-belief operators and the one between p-belief operators and dual p-belief

operators. To see this point, a regular collection of dual p-belief operators
−→
Lp induces

a mapping tL : Ω→M(Ω) defined as follows:

tL(ω)(E) := min{p ∈ [0, 1] | ω ∈ Lp(E)} for all (p, E) ∈ [0, 1]×D. (8)

Also, I define the dual p-belief operators
−→
LpB induced by a regular collection of p-belief

operators
−→
Bp by combining Expressions (5) and (7):

LpB(E) := {ω ∈ Ω | max{q ∈ [0, 1] | ω ∈ Bq(E)} ≤ p} for each (p, E) ∈ [0, 1]×D.
(9)

Finally, I define the p-belief operators
−→
Bp
L induced by a regular collection of dual

p-belief operators
−→
Lp by combining Expressions (4) and (8):

Bp
L(E) := {ω ∈ Ω | min{q ∈ [0, 1] | ω ∈ Lq(E)} ≥ p} for each (p, E) ∈ [0, 1]×D.

(10)
The following proposition establishes the one-to-one-correspondences.

Proposition 3. 1. (a) Given a type mapping t : (Ω,D) → (M(Ω),DM), the

collection of dual p-belief operators
−→
Lpt is well-defined and regular.

(b) Conversely, given a regular collection
−→
Lp of dual p-belief operators, the

mapping tL is a well-defined type mapping.

(c) Furthermore, t = tLt and
−→
Lp =

−→
LptL.

2. (a) Let
−→
Bp be a regular collection of p-belief operators. Then,

−→
LpB is a well-

defined regular collection of dual p-belief operators.

(b) Conversely, let
−→
Lp be a regular collection of dual p-belief operators. Then,

−→
Bp
L is a well-defined regular collection of p-belief operators.

(c) Moreover, LpBL
= Lp and Bp

LB
= Bp for all p ∈ [0, 1].

Figure 4 illustrates Propositions 2 and 3. The figure depicts the equivalence among
a type mapping t : (Ω,D) → (M(Ω),DM) (recall that a mapping t : Ω → M(Ω) is a

type mapping if it is measurable), a regular collection of p-belief operators
−→
Bp, and
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A (measurable) type mapping
t : (Ω,D)→ (M(Ω),DM)

Regular
p-Belief Operators Bp : D → D

Regular
dual p-belief Operators Lp : D → D

↑ Expression (7)
↓ Expression (4)

↑ Expression (8)
↓ Expression (5)

→ Expression (9)

← Expression (10)

Figure 4: An Illustration of Propositions 2 and 3.

a regular collection of dual p-belief operators
−→
Lp. The figure also illustrates how one

representation induces another.

If a collection of p-belief operators
−→
Bp is regular, then the dual collection

−→
Lp is well-

defined and regular. Likewise, if a collection of dual p-belief operators
−→
Lp is regular,

then the collection
−→
Bp is well-defined and regular. In fact, by Limit Measurability

and Dual Limit Measurability, one can admit another set of representations.

Corollary 1. 1. If
−→
Bp is regular, then LpB(·) =

⋂
n∈N

(¬Bp+ 1
n )(·) ∈ D.

2. If
−→
Lp is regular, then Bp

L(·) =
⋂
n∈N

(¬Lp−
1
n )(·) ∈ D.

Section 4 will characterize properties of the agent’s beliefs with
−→
Bp being a prim-

itive. By virtue of the equivalence established in Proposition 2, I sometimes use the

dual p-belief operators
−→
LpB. Also, I often drop the subscripts from the type mapping,

the p-belief operator, and the dual p-belief operator (e.g.,
−→
Lp instead of

−→
LpB).

4 Representations of Properties of Beliefs

This section studies logical and introspective properties of beliefs. Section 4.1 studies
logical properties of beliefs. The main result of this section, Theorem 1, allows for
identifying the specific conditions on p-belief operators that lead to specific forms of
non-additive beliefs such as Choquet and Dempster-Shafer beliefs. Section 4.2 studies
introspective properties of beliefs. These properties also play a role in formalizing
common p-beliefs.
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4.1 Logical Properties of Beliefs

Proposition 2 has established the benchmark equivalence between a type mapping
and a regular collection of p-belief operators. In order to extend the equivalence to a
wide variety of beliefs, I define properties of beliefs in terms of a type mapping and
p-belief operators.

I begin by defining standard properties of a set function.

Definition 1. A set function µ : D → [0, 1] satisfies:

1. No-Contradiction if µ(∅) = 0;

2. Normalization if µ(Ω) = 1;

3. Monotonicity if E ⊆ F implies µ(E) ⊆ µ(F );

4. Sub-additivity if µ(E ∪ F ) ≤ µ(E) + µ(Ec ∩ F ) for any E,F ∈ D;

5. Super-additivity if µ(E ∪ F ) ≥ µ(E) + µ(Ec ∩ F ) for any E,F ∈ D;

6. Finite Additivity if µ satisfies Sub-additivity and Super-additivity.

A given type mapping t satisfies each property in Definition 1 if t(ω) satisfies
it for every ω ∈ Ω. In Definition 1, Super-additivity implies Monotonicity. Also,
Super-additivity and Normalization imply No-Contradiction.

A set function µ : D → [0, 1] is a Choquet (1954) capacity (or a non-additive
probability measure) if it satisfies No-Contradiction, Normalization, and Monotonicity
(sometimes, the continuity properties (from above and from below) to be introduced
in Definition 3 are assumed as well). A capacity is a finitely-additive probability
measure if it additionally satisfies Finite Additivity.

To study Dempster-Shafer beliefs (Dempster, 1967; Shafer, 1976) or possibility
beliefs (Dubois and Prade, 1988; Zadeh, 1978), I introduce four additional properties.
To that end, let Pn := P({1, . . . , n}) \ {∅} for each n ∈ N.

Definition 2. A set function µ : D → [0, 1] satisfies:

7. (a) n-Monotonicity (where n ∈ N \ {1}) if

µ

(
n⋃
j=1

Ej

)
≥
∑
J∈Pn

(−1)|J |−1µ

(⋂
j∈J

Ej

)
; (11)

(b) ∞-Monotonicity if n-Monotonicity holds for all n ∈ N \ {1};

8. (a) Alternating n-Monotonicity (where n ∈ N \ {1}) if

µ

(
n⋂
j=1

Ej

)
≤
∑
J∈Pn

(−1)|J |−1µ

(⋃
j∈J

Ej

)
; (12)
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(b) Alternating ∞-Monotonicity if Alternating n-Monotonicity holds for all
n ∈ N \ {1};

9. (a) Maxitivity if, for any {Ej}j∈J ⊆ D with
⋃
j∈J

Ej ∈ D,

µ

(⋃
j∈J

Ej

)
≤ sup

j∈J
µ(Ej);

(b) Finite Maxitivity if µ(E ∪ F ) ≤ max(µ(E), µ(F ));

10. (a) Minitivity if, for any {Ej}j∈J ⊆ D with
⋂
j∈J

Ej ∈ D,

µ

(⋂
j∈J

Ej

)
≥ inf

j∈J
µ(Ej);

(b) Finite Minitivity if µ(E ∩ F ) ≥ min(µ(E), µ(F )).

Again, a given type mapping t satisfies each property in Definition 2 if t(ω) satis-
fies it for every ω ∈ Ω. First, µ is a Dempster-Shafer belief function if it satisfies No-
Contradiction, Normalization, and ∞-Monotonicity (“Continuity-from-above” prop-
erty to be introduced in Definition 3 is sometimes assumed). The dual set function
µ defined by

µ(E) := 1− µ(Ec)

is referred to as a plausibility function. Groes et al. (1998) study mixed-strategy Nash
equilibria when agents’ beliefs are non-additive and satisfy n-Monotonicity.

Second, µ is a possibility measure if it satisfies No-Contradiction, Normalization,
Monotonicity, and Maxitivity. Each set function πi(ω) in Section 2 is an example of
a possibility measure. The set function µ is referred to as a necessity measure. It can
be seen that a possibility measure (precisely, any set function satisfying Monotonicity
and Finite Maxitivity) satisfies Alternating ∞-Monotonicity. Indeed, the possibility
measure is a plausibility function (i.e., the necessity measure is a belief function).
See, for example, Halpern (2017) and Wang and Klir (2010).

Also, qualitative belief or knowledge induced by a possibility correspondence (e.g.,
Aumann, 1976) satisfies Minitivity: the agent believes an event E (at a state) if the
event E includes the information set at that state.9

Four remarks on Definition 2 are in order. First, the “converse” weak inequality
in Finite Maxitivity, Finite Minitivity, Maxitivity, and Minitivity are all equivalent

9If the agent believes each event Ej (at a state), then her information set (at the state) is included
in Ej for all j ∈ J . Whenever

⋂
j∈J Ej ∈ D (i.e., it is an object of her beliefs), she believes the

conjunction
⋂

j∈J Ej (at the state).
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to Monotonicity. Thus, if µ is monotone then each of them is characterized by the
equality as in the literature (e.g., Wang and Klir, 2010).

Second, Finite Maxitivity implies Sub-additivity. Third, consider n-Monotonicity.
If n = 2 then

µ(E1) + µ(E2) ≤ µ(E1 ∩ E2) + µ(E1 ∪ E2).

This is sometimes referred to as Convexity, and is associated with a notion of un-
certainty aversion (Schmeidler, 1986, 1989).10 If µ satisfies n-Monotonicity, then it
satisfies k-Monotonicity for any k ≤ n. Also, n-Monotonicity implies Monotonicity,
given No-Contradiction.11

Fourth, consider Alternating n-Monotonicity. If n = 2 then

µ(E1 ∩ E2) + µ(E1 ∪ E2) ≤ µ(E1) + µ(E2).

This is sometimes referred to as Concavity. If µ satisfies Alternating n-Monotonicity,
then it satisfies Alternating k-Monotonicity for any k ≤ n.

To sum up the properties of a set function, I introduce continuity properties.

Definition 3. For ease of exposition, suppose that D is a σ-algebra. The set function
µ satisfies:

11. Countable Sub-additivity if µ

(⋃
n∈N

En

)
≤
∑
n∈N

µ

((
n−1⋂
m=1

Ec
m

)
∩ En

)
;

12. Countable Super-additivity if µ

(⋃
n∈N

En

)
≥
∑
n∈N

µ

((
n−1⋂
m=1

Ec
m

)
∩ En

)
;

13. Countable-additivity if µ satisfies Countable Sub-additivity and Countable Super-
additivity;

14. Continuity from Above if En ↓ E implies µ(En) ↓ µ(E);

15. Continuity from Below if En ↑ E implies µ(En) ↑ µ(E).

While I have introduce the continuity properties on a σ-algebra D, it is possible to
define these properties when D is an algebra by requiring the given collection (En)n∈N
to satisfy

⋃
n∈NEn ∈ D or E =

⋂
n∈NEn ∈ D. Again, a given type mapping t satisfies

10For instance, Eichberger and Kelsey (2000) assume convexity throughout their analysis of games
with non-additive beliefs.

11The proof goes as follows. Suppose E ⊆ F . Letting (E1, E2) = (E,F \ E), it follows from
2-Monotonicity (i.e., Convexity) and No-Contradiction that

µ(F ) = µ(E1 ∪ E2) ≥ µ(E1) + µ(E2)− µ(E1 ∩ E2) = µ(E) + µ(F \ E) ≥ µ(E).
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each property in Definition 3 if t(ω) satisfies it for every ω ∈ Ω. Monotonicity is
implicit in Continuity from Above and Continuity from Below. As already discussed,
a capacity is often assumed to satisfy Continuity from Above and Continuity from
Below in addition to No-Contradiction, Normalization, and Monotonicity (when D is
infinite). Also, a Dempster-Shafer belief function is also assumed to satisfy Continuity
from Above in addition to No-Contradiction, Normalization, and ∞-Monotonicity
(when D is infinite).

Now, I turn to defining the corresponding properties of beliefs in terms of p-belief
operators. To that end, define Mp

J and Np
J with J ∈ Pn = P({1, . . . , n}) \ {∅} as

Mp
J :=

{
Bp if |J | is odd

Lp if |J | is even
and Np

J :=

{
Lp if |J | is odd

Bp if |J | is even
.

First, I introduce the standard properties of beliefs that correspond to Definition
1.

Definition 4. A regular collection
−→
Bp of p-belief operators satisfies:

1. No-Contradiction if Bp(∅) = ∅ for any p ∈ (0, 1];

2. Normalization if B1(Ω) = Ω;

3. Monotonicity if E ⊆ F implies Bp(E) ⊆ Bp(F );

4. Sub-additivity if Lp(E) ∩ Lq(Ec ∩ F ) ⊆ Lp+q(E ∪ F ) for any E,F ∈ D;

5. Super-additivity if Bp(E) ∩Bq(Ec ∩ F ) ⊆ Bp+q(E ∪ F ) for any E,F ∈ D;

6. Finite Additivity if
−→
Bp satisfies Sub-additivity and Super-additivity.

Two remarks on Definition 4 in relation to the literature are in order. First, as in
Samet (2000, Section 4), Sub-additivity is equivalent to:

(¬Bp)(Ẽ ∩ F̃ ) ∩ (¬Bq)(Ẽ ∩ F̃ c) ⊆ (¬Bp+q)(Ẽ) for any Ẽ, F̃ ∈ D.

Second, as in Samet (2000, Section 4), Super-additivity is restated as:

Bp(Ẽ ∩ F̃ ) ∩Bq(Ẽ ∩ F̃ c) ⊆ Bp+q(Ẽ) for any Ẽ, F̃ ∈ D.

Next, I introduce the properties of beliefs that correspond to Definition 2.

Definition 5. A regular collection
−→
Bp of p-belief operators satisfies:

7. (a) n-Monotonicity (where n ∈ N \ {1}) if

⋂
J∈Pn

MpJ
J

(⋂
j∈J

Ej

)
⊆ B

∑
J∈Pn (−1)|J|−1pJ

(
n⋃
j=1

Ej

)
; (13)
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(b) ∞-Monotonicity if it satisfies n-Monotonicity for all n ∈ N \ {1};

8. (a) Alternating n-Monotonicity (where n ∈ N \ {1}) if

⋂
J∈Pn

NpJ
J

(⋃
j∈J

Ej

)
⊆ B

∑
J∈Pn (−1)|J|−1pJ

(
n⋂
j=1

Ej

)
; (14)

(b) Alternating ∞-Monotonicity if it satisfies Alternating n-Monotonicity for
all n ∈ N \ {1};

9. (a) Maxitivity if
⋂
j∈J

Lpj(Ej) ⊆ Lsupj pj

(⋃
j∈J

Ej

)
, where

⋃
j∈J Ej ∈ D;

(b) Finite Maxitivity if Lp(E) ∩ Lq(F ) ⊆ Lmax(p,q)(E ∪ F );

10. (a) Minitivity if
⋂
j∈J

Bpj(Ej) ⊆ Binfj pj

(⋂
j∈J

Ej

)
, where

⋂
j∈J Ej ∈ D;

(b) Finite Minitivity if Bp(E) ∩Bq(F ) ⊆ Bmin(p,q)(E ∩ F ).

In Definition 5, Finite Maxivity is restated as:

(¬Bp)(E) ∩ (¬Bq)(F ) ⊆ (¬Bmax(p,q))(E ∪ F ).

Finally, I introduce the properties of beliefs that correspond to Definition 3.

Definition 6. As in Definition 3, for ease of exposition, suppose that D is a σ-algebra.

A regular collection
−→
Bp of p-belief operators satisfies:

11. Countable Sub-additivity if

⋂
n∈N

Lpn

((
n−1⋂
m=1

Ec
m

)
∩ En

)
⊆ L

∑
n∈N pn

(⋃
n∈N

En

)
,

12. Countable Super-additivity if

⋂
n∈N

Bpn

((
n−1⋂
m=1

Ec
m

)
∩ En

)
⊆ B

∑
n∈N pn

(⋃
n∈N

En

)
;

13. Countable-additivity if
−→
Bp satisfies Countable Sub-additivity and Countable

Super-additivity.

14. Continuity from Above if En ↓ E implies Bp(En) ↓ Bp(E);
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15. Continuity from Below if En ↑ E implies Lp(En) ↓ Lp(E).

Now, I present the main result of this section, which extends Proposition 2 to any
collection of axioms on set functions on (Ω,D) defined in Definitions 1 to 3.

Theorem 1. Consider any possible combination of axiom(s) on set functions on
(Ω,D) defined in Definitions 1 to 3, and let M(Ω) be the collection of such set func-
tions.

1. If a measurable mapping t : (Ω,D) → (M(Ω),DM) is given, then the induced

collection
−→
Bp
t is well-defined, is regular, and satisfies the corresponding assump-

tion(s) in Definitions 4 to 6.

2. Conversely, the mapping tB : (Ω,D)→ (M(Ω),DM) induced by a regular collec-

tion
−→
Bp of p-belief operators respecting the given assumption(s) in Definitions

4 to 6 is a well-defined measurable mapping which satisfies the corresponding
assumption(s) in Definitions 1 to 3.

3. Furthermore, t = tBt and
−→
Bp =

−−→
Bp
tB

.

4.2 Introspective Properties of Beliefs

The previous subsection has characterized logical properties of beliefs. This subsection
studies the agent’s introspective properties on her own beliefs, and shows that the
introspective properties can be formulated independently of the logical properties.

In the literature, an agent is certain of her beliefs if

t(ω)(E) = 1 for any (ω,E) ∈ Ω×D with E ⊇ {ω̃ ∈ Ω | t(ω) = t(ω̃)}.

The idea is that, at each state ω, if the agent is certain of her beliefs, then she must
be able to infer that the true state is in one of {ω̃ ∈ Ω | t(ω) = t(ω̃)}. For instance, in
the literature on the construction of a terminal belief space, Fukuda (2024a, 2025b),
Meier (2006), and Mertens and Zamir (1985) impose this property.12

As is well-known in the literature, if the agent is certain of her beliefs then the
following two introspective properties hold (for all p ∈ [0, 1]).13

1. Positive Certainty: Bp(·) ⊆ B1Bp(·).

2. Negative Certainty: (¬Bp)(·) ⊆ B1(¬Bp)(·).
12In different contexts, papers such as Fukuda (2025a) and Samet (1999, 2000) provide epistemic

characterizations of this property.
13The converse holds, for example, under the following environment: D is a σ-algebra generated

by a countable algebra and every ti(ω) is a countably-additive probability measure (Samet, 1999).
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While the literature assumes that each type t(ω) is at least a finitely-additive measure,
it can be seen from Expressions (4) and (7) that one can formalize/rewrite these
properties as follows.

1. Positive Certainty holds iff, for any (E, p) ∈ D × [0, 1] with t(ω)(E) ≥ p,

1 = t(ω)({ω̃ ∈ Ω | p ≤ t(ω̃)(E)}). (15)

2. Negative Certainty holds iff, for any (E, p) ∈ D × [0, 1] with t(ω)(E) < p,

1 = t(ω)({ω̃ ∈ Ω | t(ω̃)(E) < p}). (16)

Here, I study the following two weaker introspective properties, Positive Intro-
spection and Negative Introspection, whenever each t(ω) is a set function and inde-
pendently from the logical properties. Positive Introspection states that if the agent
p-believes an event then she p-believes that she p-believes it. In contrast, Negative
Introspection states that if the agent does not p-believe an event, then she p-believes
that she does not p-believe it.

Lemma 1. 3. Positive Introspection: Bp(·) ⊆ BpBp(·) iff

t(ω)(E) ≤ t(ω)({ω̃ ∈ Ω | t(ω)(E) ≤ t(ω̃)(E)}) for all (ω,E) ∈ Ω×D.

4. Negative Introspection: (¬Bp)(·) ⊆ Bp(¬Bp)(·) iff

t(ω)(E) + ε ≤ t(ω)({ω̃ ∈ Ω | t(ω̃)(E) < t(ω)(E) + ε})

for all ω ∈ Ω, E ∈ D, and ε ∈ (0, 1− t(ω)(E)].

Heifetz and Mongin (2001) characterize introspective properties of 1-belief (i.e.,
certainty) operators:

B1(·) ⊆ B1B1(·) and (¬B1)(·) ⊆ B1(¬B1)(·).

These properties can also be characterized by putting p = 1 in Expressions (15) and
(16), respectively.

To conclude this subsection, I study Subpotency: if the agent p-believes that
she p-believes an event then she p-believes it. Thus, Subpotency is the converse
of Positive Introspection. Section 5.1 studies the implication of Subpotency on the
iterative formulation of common belief.

Proposition 4. 1. Subpotency: BpBp(·) ⊆ Bp(·) iff

t(ω)(E) ≥ p

for any (ω,E, p) ∈ Ω×D × [0, 1] with t(ω)({ω̃ ∈ Ω | t(ω̃)(E) ≥ p}) ≥ p.
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2. If a regular collection
−→
Bp of p-belief operators satisfies No-Contradiction, Nor-

malization, 2-Monotonicity (i.e., Convexity), and Negative Certainty, then it
satisfies Subpotency.

The first part of the proposition states that one can formalize Subpotency solely
in terms of the type mapping. The second part implies that if the agent’s beliefs
are represented by a type mapping t such that each t(ω) is a convex capacity and
such that t satisfies Negative Certainty (i.e., the agent is introspective about the lack
of her own beliefs) then her type mapping also satisfies Subpotency. The result in
Section 5.1 shows that, in such a setting, the common p-belief operator reduces to
the iteration of mutual p-belief operators.

The introspective properties in this subsection enable the analysts to study be-
liefs of agents who are introspective about their own beliefs by restricting attention to
beliefs (either type mappings or p-belief operators) which satisfy the above introspec-
tive properties. Note that these characterizations hold irrespective of any underlying
logical properties of beliefs.

5 Applications

This section discusses applications of the framework of this paper. Since the Intro-
duction has discussed possible applications to epistemic analyses of game-theoretic
solution concepts and the agreeing-to-disagree and no-trade theorems and Section 2
has analyzed Rubinstein (1989)’s e-mail game with non-additive beliefs, this section
discusses other applications. Specifically, Section 5.1 defines the multi-agent frame-
work including common p-beliefs. Section 5.2 demonstrates that the framework of
this paper admits a terminal belief space. Section 5.3 considers the extension to
conditional beliefs.

5.1 Common p-Belief

Throughout this subsection, let I be an at-most countable set of agents with |I| ≥ 2.

In this subsection, a model refers to a tuple 〈(Ω,D), (
−→
Bp
i )i∈I ,

−→
Cp〉 with the following

three ingredients. First, (Ω,D) is a measurable state space: I assume that D is a σ-
algebra so as to ensure that the iterations of mutual p-beliefs are always well-defined.

Second, for each agent i ∈ I,
−→
Bp
i = (Bp

i )p∈[0,1] is a regular collection of agent i’s
p-belief operators. Define the mutual p-belief operators (Bp

I )p∈[0,1] as

Bp
I (·) :=

⋂
i∈I

Bp
i (·) for each p ∈ [0, 1].

Call an event F ∈ D a common p-basis (Fukuda, 2020) if

F ⊆ E implies F ⊆ Bp
I (E).
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That is, F is a common p-basis if everybody p-believes any logical consequence of
F . Note that, when the mutual p-belief operator Bp

I satisfies Monotonicity, an event
F ∈ D is a common p-basis iff it is a p-evident event (e.g., Monderer and Samet,
1989): F ⊆ Bp

I (F ).

Third,
−→
Cp = (Cp)p∈[0,1] is a collection of common p-belief operators Cp : D → D

defined as follows (e.g., Fukuda, 2020; Monderer and Samet, 1989): for each E ∈ D,

Cp(E) := {ω ∈ Ω | there is a common p-basis F ∈ D with ω ∈ F ⊆ Bp
I (E)} ∈ D.

By construction, the common p-belief implies any level of mutual p-beliefs:

Cp(·) ⊆ (Bp
I )
n(·) for any n ∈ N.

Denoting by

Bp
∗(·) :=

⋂
n∈N

(Bp
I )
n(·)

the iterative common p-belief operator, it follows that

Cp(·) ⊆ Bp
∗(·).

That is, if an event E is common p-belief, then everybody p-believes E, everybody
p-believes that everybody p-believes E, and so on ad infinitum.

Now, if each agent’s p-belief operators satisfy the logical and introspective prop-
erties of Monotonicity, Subpotency, and Continuity from Above, then the common
p-belief operator Cp coincides with the iterative common p-belief operator Bp

∗ (Mon-
derer and Samet, 1989, Proposition 4).

Remark 2. Suppose that, for every agent i ∈ I,
−→
Bp
i satisfies Monotonicity, Subpo-

tency, and Continuity from Above. Then, Cp = Bp
∗ (for all p ∈ [0, 1]).

5.2 Terminal Non-Additive Belief Spaces

This subsection aims at showing the existence of a terminal non-additive belief space.
To that end, let I be a set of agents with |I| ≥ 2, and let S be a set of states of
nature endowed with an algebra S on S. The states of nature are exogenously given
parameter values such as strategies or payoffs about which agents interactively reason.
Also, fix a possible combination of properties of (non-additive) beliefs specified in
Definitions 4, 5, and 6.

With these definitions in mind, a belief space of I over (S,S) is a tuple
−→
Ω =

〈(Ω,D), (Bp
i )(i,p)∈I×[0,1],Θ〉 with the following three properties.

1. Ω is a set of states of the world, endowed with an algebra D on Ω.

2. For each agent i,
−→
Bp
i , where Bp

i : D → D, is agent i’s regular collection of
p-belief operators that satisfies the given assumptions on beliefs.
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3. Θ : (Ω,D) → (S,S) is a measurable mapping that associates, with each state
of the world, the corresponding state of nature.

One can define the class of belief spaces, depending on the choice of the assumptions on
beliefs. Note that, by Theorem 1, even if one starts by defining a belief space through
the agents’ type mappings, one can equivalently define the belief space through p-
belief operators. While, for ease of exposition, I omit introducing the common belief
operator from a belief space, one can incorporate the common p-belief operators into
the definition of a belief space.14

In the belief space
−→
Ω , the analysts can represent the agents’ first- and higher-

order beliefs about (S,S) through Θ and the agents’ belief operators (Bp
i )(i,p)∈I×[0,1].

For any E ∈ S, the agents’ first-order beliefs are represented by Bp
i (Θ

−1(E)), their
second-order beliefs are represented by Bp

jB
p
i (Θ

−1(E)), and so on.
A terminal belief space is defined as a belief space to which every belief space in the

given class is uniquely mapped in a belief-preserving manner. I start by formalizing
the notion of a belief-preserving map, a belief morphism.

Namely, let
−→
Ω = 〈(Ω,D), (Bp

i )(i,p)∈I×[0,1],Θ〉 and
−→
Ω′ = 〈(Ω′,D′), (B′pi )(i,p)∈I×[0,1],Θ

′〉
be belief spaces (of the given class). A belief morphism ϕ :

−→
Ω →

−→
Ω′ is a measurable

map ϕ : (Ω,D)→ (Ω′,D′) satisfying the following two conditions:

1. Θ = Θ′ ◦ ϕ;

2. Bp
i (ϕ

−1(E ′)) = ϕ−1(B′pi (E ′)) for each (i, p, E ′) ∈ I × [0, 1]×D′.

The belief morphism ϕ associates, with each state ω ∈ Ω, the corresponding state
ϕ(ω) ∈ Ω′ with the two conditions. The first condition requires that the same state
of nature prevail between two states ω and ϕ(ω). The second condition states that
the agents’ p-beliefs are preserved from one space to another: agent i p-believes an
event E ′ at ϕ(ω) iff she p-believes ϕ−1(E ′) at ω.

For any belief space
−→
Ω , the identity map idΩ on Ω is a belief morphism from

−→
Ω

into itself. Next, call a belief morphism ϕ :
−→
Ω →

−→
Ω′ a belief isomorphism, if ϕ is

bijective and its inverse ϕ−1 is a morphism. If ϕ is an isomorphism then its inverse

ϕ−1 is unique. Belief spaces
−→
Ω and

−→
Ω′ are isomorphic, if there is an isomorphism

ϕ :
−→
Ω →

−→
Ω′.

Now, I define a terminal belief space. Namely a belief space
−→
Ω∗ is terminal if, for

any belief space
−→
Ω (in the class), there is a unique morphism ϕ :

−→
Ω →

−→
Ω∗.

Proposition 5. Fix a combination of properties of beliefs specified in Definitions 4,
5, and 6. This defines the class of belief spaces respecting the specified properties.

Then, there exists a terminal belief space
−→
Ω∗ in the given class.

14Under certain assumptions (e.g., D is a σ-algebra and the agent’s p-belief operators satisfies the
properties in Remark 2), the common p-belief operator can be expressed in terms of the agents’
p-belief operators.
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In the context of this paper, the proposition follows from Fukuda (2024b, Section
5.1), which shows the existence of a terminal belief space irrespective of properties of
beliefs once the properties of beliefs are represented through belief operators. Since
Theorem 1 shows that various non-additive beliefs can be represented through p-belief
operators, one can apply the arguments in Fukuda (2024b, Section 5.1) to the context
of this paper to assert the existence of a terminal belief space.

In epistemic game theory, a terminal belief space is used to characterize certain
solution concepts such as iterated elimination of strictly dominated actions (as an
implication of rationality and common belief in rationality). It would be interesting
to study an implication of rationality and common belief in rationality on a terminal
belief space in the context of non-additive beliefs (see Dominiak and Schipper (2021)
in this direction).

5.3 Conditional Non-Additive Beliefs

This subsection studies conditional non-additive beliefs represented by a conditional
belief system. The conditional belief system specifies an agent’s belief in an event
conditional on each conditioning event. Rényi (1955) axiomatizes a conditional prob-
ability system that specifies countably-additive probabilistic beliefs on conditioning
events.15 Thus, a conditional type mapping is a mapping that associates, with each
state of the world, a conditional belief system. Di Tillio, Halpern, and Samet (2014,
Theorem 1) identify conditions on conditional p-belief operators under which they
induce a conditional type mapping.

First, this subsection introduces conditional beliefs at an abstract level in line with
the analyses in Section 3. Second, it replicates Di Tillio, Halpern, and Samet (2014,
Theorem 1). Third, it formulates conditional belief systems for possibility measures.

5.3.1 Conditional Type Mappings and Conditional p-Belief Operators

Throughout the subsection, fix a tuple (Ω,D, C): D is an algebra on a set Ω; and C is
a non-empty sub-collection D with ∅ 6∈ C. While various set-algebraic assumptions on
C are imposed in the literature, I simply consider the case with ∅ 6∈ C ⊆ D. Let M(Ω)
be a subset of [0, 1]D such that each element µ ∈M(Ω) satisfies some given properties
of conditional beliefs irrespective of conditioning events (recall Section 3.2).16

Let MC(Ω) := (M(Ω))C be the product of M(Ω) over C, and denote by −→µ :=
(µ(·|C))C∈C a profile of set functions in MC(Ω). Call −→µ a conditional set function.
For ease of notation, letting MC(Ω) := M(Ω), denote MC(Ω) =

∏
C∈CMC(Ω).

15Battigalli and Siniscalchi (1999) and Guarino (2017, 2024) construct a terminal type space based
on a conditional probability systems.

16I will define a conditional set function −→µ as −→µ := (µ(· | C))C∈C , where µ(· | C) is a set function
defined on D conditional on a conditioning event C ∈ C. I define M(Ω) as the collection of set
functions on D which satisfy a given combination of properties (recall Section 3.2) irrespective of
conditioning events C ∈ C.
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I introduce the product algebra DCM on MC(Ω). Namely, denoting by prC :
MC(Ω)→MC(Ω) the projection, DCM is the smallest algebra including

pr−1
C ({µ ∈M(Ω) | µ(E) ≥ p}) and pr−1

C ({µ ∈M(Ω) | µ(E) ≤ p})

for every (C,E, p) ∈ C × D × [0, 1].
For a given property of a set function in Definitions 1 to 3, a conditional set

function −→µ := (µ(·|C))C∈C ∈ MC(Ω) satisfies it if every µ(·|C) satisfies it. For
example, −→µ satisfies No-Contradiction if

µ(∅|C) = 0 for all C ∈ C.

A conditional type mapping is a measurable mapping

−→
t : (Ω,D)→ (MC(Ω),DCM)

denoted by −→
t = (t(·)(·|C))C∈C.

Namely, for each (C,E, p) ∈ C × D × [0, 1],

Bp
t (E|C) := {ω ∈ Ω | t(ω)(E|C) ≥ p} ∈ D.17

A collection of conditional p-belief operators is

−→
Bp := (Bp(·|C))(C,p)∈C×[0,1]

such that Bp(·|C) : D → D for every (C, p) ∈ C × [0, 1]. It is regular if

−−−−−→
Bp(·|C) := (Bp(·|C))p∈[0,1]

is regular for every C ∈ C. For each property in Definitions 4 to 6, a regular collection

of conditional p-belief operators satisfies the property if
−−−−−→
Bp(·|C) satisfies it for every

C ∈ C. Similarly, one can define the dual conditional p-belief operators
−→
Lp.

The analysis in Section 3 implies: a conditional type mapping
−→
t induces the

regular collection of conditional p-belief operators
−→
Bp
t ; and in turn, a regular collection

of conditional p-belief operators
−→
Bp
t induces the conditional type mapping

−→
t : for each

(ω,C,E) ∈ Ω× C ×D,

tB(ω)(E | C) := max{p ∈ [0, 1] | ω ∈ Bp(E | C)}.
17If each conditional p-belief Bp

t (E|C) is required to be a conditional event, then a stronger
“measurability” condition with respect to C has to be imposed: for all (C,E, p) ∈ C × D × [0, 1],

Bp
t (E|C) ∈ C.

This paper, however, does not consider this case.
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Moreover, given
−→
Bp, for all (C,E) ∈ C × D,

Bp(E | C) = {ω ∈ Ω | tB(ω)(E | C) ≥ p} = Bp
tB

(E | C);

and given
−→
t , for all (ω,C,E) ∈ Ω× C ×D,

t(ω)(E | C) = max{p ∈ [0, 1] | ω ∈ Bp
t (E | C)} = tBt(ω)(E | C).

5.3.2 Conditional Probability Systems

I first revisit Di Tillio, Halpern, and Samet (2014, Theorem 1) by introducing two
new axioms on conditional beliefs for both conditional set functions and conditional
p-belief operators. The first axiom on a conditional set function −→µ is Normality :

µ(C|C) = 1 for all C ∈ C.

The second is the Chain Rule: for any (C,D,E) ∈ C × C × D with E ⊆ D ⊆ C,

µ(E|C) = µ(E|D)µ(D|C). (17)

In the literature, −→µ is a (countably-additive) conditional probability system (Rényi,
1955) if it satisfies Normality, the Chain Rule, Normalization, and each µ(· | C) is a
countably-additive probability measure on (Ω,D).

Remark 3. If −→µ satisfies Normality and Finite Additivity, then it satisfies the Chain
Rule iff, for any (C,D,E) ∈ C × C × D with E ⊆ D ⊆ C,

µ(E|C) ≥ µ(E|D)µ(D|C).18 (18)

Generally, if one does not impose Finite Additivity, then the Chain rule can be de-
composed into the “≤” and “≥” parts.

As in Di Tillio, Halpern, and Samet (2014, Theorem 1), I now formulate the
corresponding properties in terms of a collection of conditional p-belief operators.

First,
−→
Bp satisfies Normality if

B1(C|C) = Ω for all C ∈ C.

Second,
−→
Bp satisfies the Chain Rule if, for any (C,D,E) ∈ C×C×D with E ⊆ D ⊆ C,

Bp(E|D) ∩Bq(D|C) ⊆ Bpq(E|C); and (19)

Lp(E|D) ∩ Lq(D|C) ⊆ Lpq(E|C). (20)

Here, the formalization of the Chain Rule by conditional p-belief operators is
slightly different from that of Di Tillio, Halpern, and Samet (2014, Theorem 1) in the
sense that they only require Expression (19). This is because, as implied by Remark

3, if
−→
Bp satisfies Normality and Finite Additivity, then it satisfies the Chain Rule,

i.e., Expression (18), iff Expression (19) holds. The other part (i.e., the “≤” part) of
the Chain Rule (i.e., Expression (17)) holds iff Expression (20) holds. In sum,

18For completeness, the Appendix provides the proof.
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Remark 4. 1. A conditional type mapping
−→
t satisfies Normality iff

−→
Bp satisfies

it.

2. A conditional type mapping
−→
t satisfies the Chain Rule iff

−→
Bp satisfies Expres-

sions (19) and (20).

I make additional remarks on the Chain Rule.

Remark 5. 1. (a) As in the literature (e.g., Halpern, 2017; Rényi, 1955), the
Chain Rule can be restated as the following stronger form: for any (C,D,E) ∈
C × D ×D with D ∩ C ∈ C,

µ(E ∩D|C) = µ(E|D ∩ C)µ(D|C).19 (21)

(b) This stronger form of the Chain Rule can be expressed as follows: for any
(C,D,E) ∈ C × D ×D with D ∩ C ∈ C,

Bp(E|D ∩ C) ∩Bq(D|C) ⊆ Bpq(E ∩D|C); and

Lp(E|D ∩ C) ∩ Lq(D|C) ⊆ Lpq(E ∩D|C).

2. (a) Under Normality, −→µ satisfies this stronger form of the Chain Rule iff it
satisfies the Chain Rule and Relativization:

µ(E|C) = µ(E ∩ C|C) for all (E,C) ∈ D × C. (22)

(b) Relativization is expressed as:

Bp(E|C) = Bp(E ∩ C|C) for all (p, C,E) ∈ [0, 1]× C ×D.20

Di Tillio, Halpern, and Samet (2014) apply introspective properties of conditional
beliefs to game-theoretic analyses of extensive-form games. As in Sections 4.2 and
5.1, one can study introspective properties of conditional (non-additive) beliefs and
conditional common p-beliefs. As in Section 5.2, one can also consider a terminal
conditional non-additive belief space.

5.3.3 Conditional Possibility Measures

Next, I consider conditional possibility measures. A conditional set function −→µ is
a conditional possibility measure (Dubois and Prade, 1998; Halpern, 2017; Hisdal,
1978) if it satisfies:

1. No-Contradiction;

19Note that if E ⊆ D ⊆ C then D ∩ C = D and Expression (21) reduces to Expression (17).
20For completeness, the Appendix provides the proof of Part (2) of this remark.
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2. Normality;

3. Maxitivity; and

4. The Possibility Chain Rule: for all (E,D,C) ∈ D ×D × C with D ∩ C ∈ C,

µ(E ∩D|C) = min(µ(E|D ∩ C), µ(D|C)). (23)

Intuitively, in the Possibility Chain Rule, the minimum of µ(E|D ∩ C) and µ(D|C)
is taken instead of the product.

The Possibility Chain Rule can be expressed in terms of conditional p-belief op-
erators as follows: for any (C,D,E) ∈ C × C × D with E ⊆ D ⊆ C,

Bp(D|C) ∩Bq(E|C ∩D) ⊆ Bmin(p,q)(E ∩D|C); and

Lp(D|C) ∩ Lq(E|C ∩D) ⊆ Lmin(p,q)(E ∩D|C).

The characterization for the Possibility Chain Rule can be obtained by replacing pq
with min(p, q) in the characterization for the Chain Rule.

Remark 6. Under Relativization, the Possibility Chain Rule can be expressed as
follows: for all (C,D,E) ∈ C × C × D with E ⊆ D ⊆ C,

µ(E|C) = min(µ(E|D), µ(D|C)).21 (24)

6 Concluding Remarks

In an interactive belief model, p-belief operators provide a convenient way to capture
interactive higher-order beliefs. This paper studies representations of non-additive
beliefs through p-belief operators. Section 2 studies the variant of Rubinstein (1989)
e-mail game with non-additive beliefs in which the agents may succeed in coordi-
nating when they receive a single message. Then, Section 3 provides the conditions
on p-belief operators under which an agent’s underlying type mapping is recovered
(Proposition 2). Building on this benchmark result, Section 4 shows that one can
axiomatize an interactive belief model that satisfies various logical and introspective
properties of beliefs in terms of p-belief operators (Theorem 1). As a result, the
paper demonstrates that one can analyze a wide variety of non-additive beliefs by
p-belief operators. Examples include Choquet capacities, Dempster-Shafer beliefs,
and possibility measures. The paper provides a foundation for studies of interactive
beliefs such as implications of common belief when agents’ beliefs are non-additive.
As applications, Section 5 shows that one can incorporate common p-beliefs and that
there exists a terminal belief space when agents’ beliefs are non-additive. Section 5
discusses an extension to conditional beliefs. This paper leaves several avenues for fu-
ture research such as the characterization of a common prior and/or the introduction
of unawareness.

21For completeness, the Appeneix provides the proof.
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A Proofs

A.1 Section 3.3

Proof of Proposition 2. 1. Let t : (Ω,D)→ (M(Ω),DM) be a type mapping. Since
t : (Ω,D)→ (M(Ω),DM) is measurable, it follows that

Bp
t (E) := {ω ∈ Ω | t(ω)(E) ≥ p} ∈ D for all E ∈ D.

That is, Bp
t : D → D is well-defined. Thus, I show that

−→
Bp
t is regular.

First, t(·)(E) ≥ 0 implies

B0
t (E) = {ω ∈ Ω | t(ω)(E) ≥ 0} = Ω.

Second, I start by observing p-Anti-Monotonicity: if p ≤ q then

Bq
t (E) = {ω ∈ Ω | t(ω)(E) ≥ q} ⊆ {ω ∈ Ω | t(ω)(E) ≥ p} = Bp

t (E).

Now, suppose pn ↑ p. Since p ≥ pn for all n ∈ N, it follows that

Bp
t (E) ⊆

⋂
n∈N

Bpn
t (E).

If ω ∈
⋂
n∈NB

pn
t (E), then

t(ω)(E) ≥ pn for all n ∈ N.

Letting n→∞ yields t(ω)(E) ≥ p, i.e., ω ∈ Bp
t (E).

Third, I have: ⋂
n∈N

(¬Bp+ 1
n )(E) =

⋂
n∈N

{ω ∈ Ω | t(ω)(E) < p+
1

n
}

= {ω ∈ Ω | t(ω)(E) ≤ p} ∈ D,

where the last set containment follows because t : (Ω,D) → (M(Ω),DM) is
measurable.

2. Conversely, let
−→
Bp be regular. First, by Non-negativity,

0 ∈ {p ∈ [0, 1] | ω ∈ Bp(E)} 6= ∅.

Second, I show that {p ∈ [0, 1] | ω ∈ Bp(E)} = [0, q], where, by the previous
argument,

q := sup{p ∈ [0, 1] | ω ∈ Bp(E)} ∈ [0, 1].
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Let (qn)n∈N be such that qn ↑ q and ω ∈ Bqn(E) for all n ∈ N. By p-Continuity
from Below,

ω ∈
⋂
n∈N

Bqn(E) = Bq(E).

Also, p-Continuity from Below implies p-Anti-Monotonicity, and thus

{p ∈ [0, 1] | ω ∈ Bp(E)} = [0, q].

Hence, tB(ω)(E) is well-defined for all (ω,E) ∈ Ω×D.

Third, I show that tB : (Ω,D)→ (M(Ω),DM) is measurable. For any (p, E) ∈
[0, 1]×D,

(tB)−1({µ ∈M(Ω) | µ(E) ≥ p}) = {ω ∈ Ω | tB(ω)(E) ≥ p} = Bp(E) ∈ D.

Also, for any (p, E) ∈ [0, 1]×D,

(tB)−1({µ ∈M(Ω) | µ(E) ≤ p}) =
⋂
n∈N

{ω ∈ Ω | tB(ω)(E) < p+
1

n
}

=
⋂
n∈N

(¬Bp+ 1
n )(E) ∈ D,

where the last set containment follows from Limit Measurability.

3. Finally, ω ∈ Bp
tB

(E) iff tB(ω)(E) ≥ p iff ω ∈ Bp(E). Also,

tBt(ω)(E) = max{p ∈ [0, 1] | ω ∈ Bp
t (E)}

= max{p ∈ [0, 1] | t(ω)(E) ≥ p} = t(ω)(E).

Proof of Proposition 3. The proof of Part (1) is similar to that of Proposition 2.
Somewhat roughly, it suffices to replace Bq

t and each axiom (Non-negativity, p-
Continuity from Below, and Limit Measurability), respectively, with Lqt and the cor-
responding axiom (Unit, p-Continuity from Above, and Dual Limit Measurability).

Hence, I only prove Part (2). First, suppose that
−→
Bp is regular. Since LpB = LptB ,

it follows from Propositions 2 and 3 (1) that
−→
LpB is well-defined and regular.

Second, suppose that
−→
Lp is regular. Since Bp

L = Bp
tL

, it follows from Propositions

2 and 3 (1) that
−→
Bp
L is well-defined and regular.

Third, I show Bp
LB

= Bp. Suppose ω ∈ Bp(E). Since one has

p ≤ max{q ∈ [0, 1] | ω ∈ Bq(E)},
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it follows that

p ≤ min{r ∈ [0, 1] | max{q ∈ [0, 1] | ω ∈ Bq(E)} ≤ r}
= min{r ∈ [0, 1] | ω ∈ LrB(E)}.

Thus, ω ∈ Bp
LB

(E). Conversely, suppose that ω ∈ Bp
LB

(E). Then,

p ≤ min{q ∈ [0, 1] | ω ∈ LqB(E)}
= min{q ∈ [0, 1] | max{r ∈ [0, 1] | ω ∈ Br(E)} ≤ q}
= max{r ∈ [0, 1] | ω ∈ Br(E)}.

Thus, ω ∈ Bp(E).
Fourth, in a similar way, I show LpBL

= Lp. Suppose ω ∈ Lp(E). Since one has

p ≥ min{q ∈ [0, 1] | ω ∈ Lq(E)},

it follows that

p ≥ max{r ∈ [0, 1] | min{q ∈ [0, 1] | ω ∈ Lq(E)} ≥ r}
= max{r ∈ [0, 1] | ω ∈ Br

L(E)}.

Thus, ω ∈ LpBL
(E). Conversely, suppose that ω ∈ LpBL

(E). Then,

p ≥ max{q ∈ [0, 1] | ω ∈ Bq
L(E)}

= max{q ∈ [0, 1] | min{r ∈ [0, 1] | ω ∈ Lr(E)} ≥ q}
= min{r ∈ [0, 1] | ω ∈ Lr(E)}.

Thus, ω ∈ Lp(E).

Proof of Corollary 1. 1. Assume that
−→
Bp is regular. For each (p, E) ∈ [0, 1] × D,

one has:

LpB(E) = {ω ∈ Ω | tB(ω)(E) ≤ p}

=
⋂
n∈N

{ω ∈ Ω | tB(ω)(E) < p+
1

n
} =

⋂
n∈N

(¬Bp+ 1
n )(E) ∈ D.

2. Assume that
−→
Lp is regular. For each (p, E) ∈ [0, 1]×D, one has:

Bp
L(E) = {ω ∈ Ω | tB(ω)(E) ≥ p}

=
⋂
n∈N

{ω ∈ Ω | tB(ω)(E) > p− 1

n
} =

⋂
n∈N

(¬Lp−
1
n )(E) ∈ D.
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A.2 Section 4.1

Proof of Theorem 1. It suffices to show that, for each property of beliefs, the repre-
sentations between a type mapping and p-belief operators are equivalent.

1. No-Contradiction. Since t(·)(∅) = 0, it follows that Bp
t (∅) = ∅ for all p ∈ (0, 1].

Conversely, if tB(ω)(∅) > 0 for some ω ∈ Ω, then tB(ω)(∅) ≥ p for some p > 0, i.e.,
ω ∈ Bp(∅) = ∅, a contradiction.

2. Normalization. If t(·)(Ω) = 1, then B1
t (Ω) = Ω. Conversely, for all ω ∈ Ω, it

follows from ω ∈ Ω = B1(Ω) that tB(ω)(Ω) = 1.

3. Monotonicity. Suppose E ⊆ F . If ω ∈ Bp
t (E) then p ≤ t(ω)(E) ≤ t(ω)(F ) and

thus ω ∈ Bp
t (F ). Conversely, ω ∈ BtB(ω)(E)(E) ⊆ BtB(ω)(E)(F ) implies tB(ω)(E) ≤

tB(ω)(F ).

4. Sub-additivity. Suppose that ω ∈ Lpt (E) ∩ Lqt (Ec ∩ F ), i.e., t(ω)(E) ≤ p and
t(ω)(Ec ∩ F ) ≤ q. Since t(ω) is sub-additive,

t(ω)(E ∪ F ) ≤ t(ω)(E) + t(ω)(Ec ∩ F ) ≤ p+ q,

i.e., ω ∈ Lp+qt (E ∪ F ). Conversely, since

ω ∈ LtB(ω)(E)
B (E) ∩ LtB(ω)(Ec∩F )

B (Ec ∩ F ) ⊆ L
tB(ω)(E)+tB(ω)(Ec∩F )
B (E ∪ F ),

it follows that tB(ω)(E ∪ F ) ≤ tB(ω)(E) + tB(ω)(Ec ∩ F ).

5. Super-additivity. The proof for Super-additivity is similar to that for Sub-additivity:
roughly, replace Lrt and ≤ with Br

t and ≥, respectively.

6. Finite-additivity. The statement follows from the characterizations for Sub-
additivity and Super-additivity.

7. n-Monotonicity and ∞-Monotonicity. Take n ∈ N with n ≥ 2. If

ω ∈
⋂
J∈Pn

MpJ
J,t

(⋂
j∈J

Ej

)
,

then (i) t(ω)
(⋂

j∈J Ej

)
≥ pJ if |J | is odd; and (ii) t(ω)

(⋂
j∈J Ej

)
≤ pJ if |J | is even.

Since t(ω) satisfies n-Monotonicity,

t(ω)

(
n⋃
j=1

Ej

)
≥
∑
J∈Pn

(−1)|J |−1t(ω)

(⋂
j∈J

Ej

)
≥
∑
J∈Pn

(−1)|J |−1pJ .
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Hence, ω ∈ B
∑

J (−1)|J|−1pJ
t

(⋃n
j=1Ej

)
. Conversely, since

ω ∈
⋂
J∈Pn

M
tB(ω)(

⋂
j∈J Ej)

J

(⋂
j∈J

Ej

)
⊆ B

∑
J∈Pn (−1)|J|−1tB(ω)(

⋂
j∈J Ej)

(
n⋃
j=1

Ej

)
,

it follows that each tB(ω) satisfies n-Monotonicity:

tB(ω)

(
n⋃
j=1

Ej

)
≥
∑
J∈Pn

(−1)|J |−1tB(ω)

(⋂
j∈J

Ej

)
.

8. Alternating n-Monotonicity and Alternating ∞-Monotonicity. The proof of this
part is omitted as it is similar to the proof of n-Monotonicity: roughly, replace MpJ

J,t ,⋂
j∈J Ej,

⋃
j∈J Eh, B

r
t , ≥, and ≤, respectively, with NpJ

J,t ,
⋃
j∈J Ej,

⋂
j∈J Ej, L

r
t , ≤,

and ≥.

9. Maxitivity and Finite Maxitivity. I only characterize Maxitivity. If ω ∈
⋂
j∈J L

pj
t (Ej)

then

t(ω)

(⋃
j∈J

Ej

)
≤ sup

j∈J
t(ω)(Ej) ≤ sup

j∈J
pj.

Thus, ω ∈ Lsupj pj
t

(⋃
j∈J Ej

)
. Conversely, if

ω ∈
⋂
j∈J

LtB(ω)(Ej)(Ej) ⊆ Lsupj tB(ω)(Ej)

(⋃
j∈J

Ej

)
,

then

tB(ω)

(⋃
j∈J

Ej

)
≤ sup

j∈J
tB(ω)(Ej).

10. Minitivity and Finite Minitivity. The proof of this part is similar to that of Max-
itivity and Finite Maxitivity: roughly, replace sup,

⋂
j∈J Ej, L

r
t , and ≤, respectively,

with inf,
⋃
j∈J Ej, B

r
t , and ≥.

11. Countable Sub-additivity. Let Fn :=
((⋂n−1

m=1 E
c
m

)
∩ En

)
for each n ∈ N. Note

that
⋃
n∈NEn =

⋃
n∈N Fn. If ω ∈

⋂
n L

pn
t (Fn), then

t(ω)(Fn) ≤ pn for each n ∈ N.
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Thus,

t(ω)

(⋃
n

En

)
= t(ω)

(⋃
n

Fn

)
≤
∑
n

t(ω)(Fn) ≤
∑
n

pn,

i.e., ω ∈ L
∑

n pn
t (

⋃
nEn). Conversely, if

ω ∈
⋂
n

L
tB(ω)(Fn)
B (Fn) ⊆ L

∑
n tB(ω)(Fn)

B

(⋃
n

Fn

)
= L

∑
n tB(ω)(Fn)

B

(⋃
n

En

)
,

then tB(ω) (
⋃
nEn) ≤

∑
n tB(ω)(Fn), as desired.

12. Countable Super-additivity. The proof for Countable Super-additivity is similar
to that for Countable Sub-additivity: roughly, replace LqB and ≤ with Bq and ≥,
respectively.

13. Countable-additivity. The statement follows from the characterizations for Count-
able Sub-additivity and Countable Super-additivity.

14. Continuity from Above. Since each t(ω) is continuous from above, t(ω) and Bp
t

are monotonic. Suppose that En ↓ E. By Monotonicity,

Bp
t (E) ⊆

⋂
n

Bp
t (En).

Let ω ∈
⋂
nB

p
t (En), i.e., t(ω)(En) ≥ p for all n ∈ N. Since t(ω) is continuous from

above, it follows that t(ω)(E) ≥ p, i.e.,

ω ∈ Bp
t (E).

Conversely, since tB(ω) is monotone, tB(ω)(E) ≤ limn tB(ω)(En). Since

ω ∈ BtB(ω)(En)(En) ⊆ Blimn tB(ω)(En)(En),

it follows from Continuity from Above that

ω ∈ Blimn tB(ω)(En)(E),

i.e., tB(ω)(E) ≥ limn tB(ω)(En).

15. Continuity from Below. The proof of this part is similar to that of Continuity
from Above: roughly, replace ↓, Br

t , and ≥, respectively, with ↑, Lrt , and ≤.
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A.3 Section 4.2

Proof of Lemma 1. 3. For the “if” part, ω ∈ Bp(E) implies p ≤ t(ω)(E). Then,

p ≤ t(ω)(E) ≤ t(ω)({ω̃ ∈ Ω | t(ω)(E) ≤ t(ω̃)(E)})
≤ t(ω)({ω̃ ∈ Ω | p ≤ t(ω̃)(E)}).

Hence,
ω ∈ Bp({ω̃ ∈ Ω | p ≤ t(ω̃)(E)}) = BpBp(E).

For the “only if” part, for any (ω,E) ∈ Ω×D, since

ω ∈ Bt(ω)(E)(E) ⊆ Bt(ω)(E)Bt(ω)(E)(E),

it follows that

t(ω)(E) ≤ t(ω)(Bt(ω)(E)(E)) = t(ω)({ω̃ ∈ Ω | t(ω)(E) ≤ t(ω̃)(E)}).

4. For the “if” part, let ε ∈ (0, 1− t(ω)(E)], and let p := t(ω)(E) + ε ≤ 1. Since

ω ∈ (¬Bp)(E) ⊆ Bp(¬Bp)(E),

it follows that

t(ω)(E) + ε︸ ︷︷ ︸
=p

≤ t(ω)({ω̃ ∈ Ω | t(ω̃)(E) < t(ω)(E) + ε︸ ︷︷ ︸
=p

}).

For the “only if” part, suppose that ω ∈ (¬Bp)(E), i.e., t(ω)(E) < p. Letting
ε := p− t(ω)(E) yields

p = t(ω)(E) + ε ≤ t(ω)({ω̃ ∈ Ω | t(ω̃)(E) < p}),

i.e., ω ∈ Bp(¬Bp)(E).

Proof of Proposition 4. 1. For the “if” part, ω ∈ BpBp(E) implies

t(ω)({ω̃ ∈ Ω | t(ω̃)(E) ≥ p}) = t(ω)(Bp(E)) ≥ p.

Thus, t(ω)(E) ≥ p, i.e., ω ∈ Bp(E). For the “only if” part, assume

t(ω)({ω̃ ∈ Ω | t(ω̃)(E) ≥ p}) ≥ p.

Then, ω ∈ BpBp(E) ⊆ Bp(E), i.e., t(ω)(E) ≥ p.

41



2. The statement holds when p = 0 as B0(·) = Ω by Non-negativity. Thus, assume
p > 0. Suppose to the contrary that ω ∈ BpBp(E)∩ (¬Bp)(E). Then, it follows
from Negative Certainty that

t(ω)(Bp(E)) ≥ p and t(ω)(¬Bp(E)) = 1.

By No-Contradiction, Normalization, and 2-Monotonicity (i.e., Convexity),

1 = t(ω)(Ω)︸ ︷︷ ︸
=1

+ t(ω)(∅)︸ ︷︷ ︸
=0

≥ t(ω)(Bp(E))︸ ︷︷ ︸
≥p

+ t(ω)(¬Bp(E))︸ ︷︷ ︸
=1

≥ p+ 1,

a contradiction.

A.4 Section 5.3

Proof of Remark 3. Suppose that a conditional set function µ satisfies Normality and
Finite Additivity. I show that the Chain Rule in the form of Expression (18) implies
that in the form of Expression (17). Take any (C,D,E) ∈ C×C×D with E ⊆ D ⊆ C.
First, by assumption, Expression (18) holds:

µ(E|C) ≥ µ(E|D)µ(D|C). (A.1)

Second, since Ec ∩D ⊆ D ⊆ C, it also follows that

µ(Ec ∩D|C) ≥ µ(Ec ∩D|D)µ(D|C). (A.2)

Then, I obtain:

µ(D|C) = µ(E|C) + µ(Ec ∩D|C)

≥ µ(E|D)µ(D|C) + µ(Ec ∩D|D)µ(D|C)

= (µ(E|D) + µ(Ec ∩D|D))µ(D|C)

= µ(D|D)µ(D|C) = µ(D|C). (A.3)

The first and third equalities follow from Finite Additivity. The weak inequality
follows from Expressions (A.1) and (A.2). The last equality follows from Normality.
Then, Expression (A.3) implies that Expressions (A.1) and (A.2) have to hold with
equality. Thus, Expression (17) holds, as desired.

Proof of Remark 5 (2). (a) Under Normality, substituting D = C into Expression
(21) yields Expression (22). Thus, it is enough to show that Expressions (17) and
(22) imply Expression (21). For any (C,D,E) ∈ C × D ×D with D ∩ C ∈ C,

µ(E ∩D | C) = µ((E ∩D) ∩ C | C)

= µ(E ∩D ∩ C | D ∩ C)µ(D ∩ C | C)

= µ(E | D ∩ C)µ(D | C),

which establishes Expression (21). The first and third equalities follow from
Relativization, and the second from Expression (17).
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(b) First, suppose that t satisfies Relativization. If ω ∈ Bp(E|C), then

t(ω)(E ∩ C|C) = t(ω)(E|C) ≥ p,

i.e., ω ∈ Bp(E ∩ C|C). If ω ∈ Bp(E ∩ C|C), then

t(ω)(E|C) = t(ω)(E ∩ C|C) ≥ p,

i.e., ω ∈ Bp(E|C).

Conversely, for any ω ∈ Ω and (E,C) ∈ D × C,

t(ω)(E|C) = max{p ∈ [0, 1] | ω ∈ Bp(E|C)}
= max{p ∈ [0, 1] | ω ∈ Bp(E ∩ C|C)} = t(ω)(E ∩ C|C).

Proof of Remark 6. Assume Expression (23). Let (C,D,E) ∈ C × C × D with E ⊆
D ⊆ C. Then,

µ(E|C) = µ(E ∩D|C)

= min(µ(E|D ∩ C), µ(D|C))

= min(µ(E|D), µ(D|C)),

which establishes Expression (24). The first equality follows because E ⊆ D. The
second equality follows from Expression (23). The third equality follows because
D ⊆ C.

Conversely, assume Expression (24). Take (C,D,E) ∈ C×D×D with D∩C ∈ C.
Then,

µ(E ∩D|C) = µ((E ∩D) ∩ C|C)

= µ(D ∩ C ∩ E|C)

= min(µ(D ∩ C ∩ E|D ∩ C), µ(D ∩ C|C))

= min(µ(E|D ∩ C), µ(D|C)),

which establishes Expression (23). The first and fourth equalities follow from Rela-
tivization. The second equality follows because (E ∩D)∩C = D ∩C ∩E. The third
equality follows from Expression (24), where observe that D ∩ C ∩ E ⊆ D ∩ C.
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