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Abstract

A p-belief operator is a convenient tool in representing agents’ higher-order
beliefs. It maps an event F to the event that an agent believes F with prob-
ability at least p. By iterating agents’ p-belief operators, the analysts can
unfold one’s beliefs about another’s without explicitly constructing beliefs over
the space of beliefs. This paper first provides the conditions under which an
agent’s p-belief operators induce her underlying beliefs at each state of the
world, i.e., her type mapping, without any underlying assumption on beliefs.
Then, the paper shows that p-belief operators alone can be a primitive of an
interactive belief model for a wide variety of non-additive beliefs. The represen-
tations include Choquet and Dempster-Shafer beliefs. Finally, since this paper
allows for a wide variety of interactive non-additive belief models, the paper
discusses possible applications such as: common p-beliefs, the existence of a
terminal non-additive belief space, and non-additive conditional beliefs.
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1 Introduction

In economic theory, the outside analysts often represent agents’ quantitative beliefs
by the notion of a type mapping. Consider an agent, Alice, who faces uncertainty
about underlying states of the world. At each state, her quantitative beliefs about
the underlying states are represented by a set function (usually, but not necessarily, a
countably-additive probability measure) defined on a collection of events (i.e., subsets
of states of the world). Call the set function the type at the prevailing state. It assigns
a degree of her belief (for ease of terminology, call it probability) to each event. Alice’s
type mapping dictates her beliefs at every state: it associates, with each state, her
type (her probabilistic beliefs) at the prevailing state.

Now, suppose that Alice and Bob are interactively reasoning about what they
believe at each state. In such an interactive situation, a notion of p-belief operators
(Friedell, |1969; Monderer and Samet, |1989) is a convenient tool to analyze interactive
beliefs of such form as: Alice p-believes (i.e., she believes with probability at least
p) that Bob g-believes (i.e., he believes with probability at least ¢) that some event
obtains at a state. Alice’s p-belief operator assigns, with each event F, the event that
she p-believes E.

By iterating agents’ p-belief operators, the outside analysts can unpack hierarchies
of interactive beliefs of the above form without explicitly constructing higher-order
beliefs such as Alice’s beliefs on the space of Bob’s beliefs. Especially, unlike the type-
mapping approach, p-belief operators represent, in a tractable way, an approximate
notion of common knowledge (Aumann, [1976; Friedell, [1969) referred to as common
p-belief (or common certainty as a special case of p = 1) (Brandenburger and Dekel,
1987; Monderer and Samet, 1989): Alice and Bob p-believes an event FE, they p-
believe that they p-believe E, and so forth ad inﬁmtumE] For example, common
p-beliefs play a crucial role in the agreeing-to-disagree and no-trade theorems and the
existence of a common prior ]

Now, if the analysts start with agents’ p-belief operators as a primitive, then can
they recover the agents’ type mappings? Samet (2000) establishes the equivalence
between an agent’s type mapping and her collection of p-belief operators when her
beliefs are countably additive (Gaifman (1988]) also establishes a related result). Zhou
(2010) provides the equivalence when agents’ beliefs are finitely additive.

The purpose of this paper is to demonstrate that, for an arbitrary notion of

!Generally, there are two channels through which common knowledge is approximated. One
is the number of iteration of reasoning. Rubinstein (1989)) shows that strategic behavior under an
arbitrarily long finite level of mutual knowledge may be different from that under common knowledge.
The other is the approximation of knowledge by probabilistic beliefs. In a standard model in which
agents possess countably-additive introspective beliefs, the approximate notion of common p-beliefs
converges to common knowledge when probability p tends to one. As discussed, this paper relaxes
countable additivity of beliefs.

2Pioneering papers include: Aumann (1976)), Heifetz (2006), Milgrom and Stokey (1982), Mon-
derer and Samet (1989)), Morris (1994)), Neeman (1996alb), and Sonsino (1995).



beliefs that can be represented by a type mapping on an underlying state space,
p-belief operators can in fact be a primitive of an interactive belief model (Theorem
in Section . Having the p-belief operator representation of an interactive belief
model opens up a wide range of applications in epistemic game theory including
epistemic analyses of game-theoretic solution concepts and the agreeing-to-disagree
and no-trade theorems. One of the applications of this paper (Proposition |5|in Section
is to assert the existence of a terminal Harsanyi (1967-1968) belief space (e.g.,
Armbruster and Boge, [1979; Boge and Eisele, [1979; Brandenburger and Dekel, |1993;
Heifetz and Samet, 1998; Mertens and Zamir, 1985) when beliefs are non-additive
(not-necessarily-additive): a terminal belief space is a belief space to which, for any
given belief space, there exists a unique structure-preserving map from the given
space.

To obtain the main result of the paper on the foundation side, Proposition [2| (in
Section provides conditions on p-belief operators under which they induce a given
type mapping. Then, Theorem [1| characterizes various non-additive beliefs in terms
of p-belief operators property by property. This paper allows the outside analysts to
scrutinize agents’ interactive beliefs through p-belief operators based on their choice
of agents’ logical abilities.

Specifically, for given properties of beliefs (that are represented as the correspond-
ing properties on a type mapping), I provide the corresponding conditions on a col-
lection of p-belief operators under which the underlying type mapping is recovered.
Examples of non-additive beliefs include: general non-additive measures (Choquet
(1954) capacities), Dempster-Shafer beliefs (Dempster, [1967; Shafer, 1976)), and pos-
sibility measures (Dubois and Prade, [1988; Zadeh, 1978)E| Since I analyze properties
of quantitative beliefs property by property, I also allow non-monotonic beliefs (i.e.,
an agent can fail to believe some of the consequences of her beliefs). In fact, the main
results go through when the agent has conditional beliefs, a set of beliefs based on
conditioning events (Section . Thus, the paper also extends the equivalence of
conditional type mappings and conditional p-belief operators by Di Tillio, Halpern,
and Samet (2014]).

On the applications side, the main result of the paper provides foundations for
epistemic characterizations of game-theoretic solution concepts when agents’ beliefs
are non-additive and the possibility of agreeing-to-disagree and speculative trade.
Since each of these topics may require a separate paper, this paper instead formulates
the notion of common p-belief (Section and shows the existence of a terminal non-
additive belief space (Section . Also, Section [2| studies a variant of Rubinstein
(1989)’s e-mail game with non-additive beliefs.

This paper is organized as follows. The rest of the Introduction discusses the re-

3See also Halpern (2017) and Wang and Klir (2010) for surveys on general set functions. In deci-
sion and game theory, the seminal papers on the use of Choquet capacity are Schmeidler (1986, 1989).
Ghirardato (2001)) and Mukerji (1997)) link Dempster-Shafer beliefs and probabilistic ignorance in
their decision theoretic frameworks.



lated literature. Section [2|studies Rubinstein (1989))’s e-mail game with non-additive
beliefs. Section [3|sets up the model, and presents the main result (Theorem (1)) on the
one-to-one correspondence between a type mapping and p-belief operators. With the
main result in mind, Section || studies various properties of probabilistic beliefs. Sec-
tion [5| discusses applications. Specifically, Section [5.1]incorporates common p-beliefs.
Section [5.2| constructs a terminal belief space. Section [5.3| extends the analyses to
conditional beliefs. Section [g] provides concluding remarks. The proofs are mostly
relegated to Appendix [A]

Related Literature

This paper is related to the following three strands of literature: (i) the construction
of a terminal belief space; (ii) representations of higher-order beliefs through belief
operators; and (iii) applications of non-additive beliefs to game theory (e.g., epistemic
analyses of solution concepts and the agreeing-to-disagree and no-trade theorems).

First, capturing agents’ beliefs by p-belief operators plays important roles when
the outside analysts represent agents’ infinite regress in their beliefs. I have already
discussed approximate notions of common knowledge. A terminal belief space, which
contains all conceivable hierarchies of interactive beliefs, may also be used to provide
epistemic characterizations of game-theoretic solution concepts or to study strategic
impacts of higher-order beliefs.

Heifetz and Samet (1998)) construct, using p-belief operators, a terminal type space
that contains any conceivable form of agents’ hierarchies of countably-additive beliefs.
Meier (2006) extends their result to the case where agents posses finitely-additive be-
liefs. This paper entirely relaxes the standard assumptions that individuals’ beliefs
are countably (or finitely) additive. As Fukuda (2024b) constructs a terminal space
when agents’ qualitative beliefs (or knowledge) are given by arbitrary belief oper-
ators, this paper establishes the existence of a terminal belief space when agents’
beliefs take a specific form of non-additive beliefs such as Choquet capacities and
Dempster-Shafer beliefsﬁ Chen (2010)), Di Tillio (2008), Epstein and Wang (1996)),
and Ganguli, Hiefetz, and Lee (2016) construct a terminal preference space, i.e., a
canonical representation of interactive beliefs where agents are non-expected-utility
maximizers, by formulating a type mapping that generates interactive preferencesﬂ

Second, agents’ beliefs are syntactically represented in a logical system in interdis-
ciplinary literature ranging in computer science and artificial intelligence, economics
and game theory, and logic and philosophy. There, agents’ beliefs surrounding a basic

4“When the analysts work explicitly on the hierarchies of higher-order beliefs, the existence of a
terminal space is non-trivial especially because the analysts often utilize a measure-theoretic and
topological apparatus such as Kolmogorov Extension Theorem (see, for example, Brandenburger and
Dekel, [1993; Pintér, 2005, 2012)). The logical construction pioneered by Heifetz and Samet (1998)
does not utilize a topological structure on an underlying uncertainty space or spaces dictating higher-
order beliefs.

5Ahn (2007) constructs a terminal ambiguous-belief space.



uncertainty space, their beliefs about their beliefs, and so on, are explicitly modeled
as logical formulas. One such syntactic representation of interactive beliefs incorpo-
rates statements of the form “Alice p-believes a proposition e.” Such papers as Fagin
and Halpern (1994), Heifetz and Mongin (2001]), and Meier (2012)) study sound-and-
complete axiomatizations of probability logics in which agents’ beliefs are countably
additive. Zhou (2010)) studies finitely-additive beliefs. Fagin, Halpern, and Megiddo
(1990) consider a probability logic where an agent’s beliefs are dictated by the inner
measure induced from a probability measureﬁ While this paper takes a purely se-
mantic (i.e., set-theoretical) approach whereby agents’ beliefs are represented over a
set of states of the world, it provides p-belief operator representations of various prop-
erties of agents’ quantitative beliefs property by property, and thereby sheds light on
a logical representation of agents’ non-additive beliefs.

Third, while the literature on epistemic analyses of game-theoretic solution con-
cepts such as various forms of rationalizability and Nash and correlated equilibria
mainly focuses on the case in which agents’ beliefs are countably additive, there
are innovative papers at the intersection of decision and game theory that study
the role of additivity. While it would be impossible to cite all papers that study
the role of additivity of beliefs in epistemic game theory, earlier papers that study
game-theoretic solution concepts under non-additive beliefs broadly construed in-
clude Dow and Werlang (1994), Eichberger and Kelsey (2000) (see also Eichberger
and Kelsey, [2014)), Epstein (1997), Groes et al. (1998), Haller (2000), Lo (1996,
1999, 2002), Marinacci (2000)), and Salo and Weber (1995). Earlier papers that show
that agreeing-to-disagree or speculative trades are possible under non-additive be-
liefs broadly construed include: Billot et al. (2000), Ganguli (2007), and Kajii and
Ui (2005} 2006). Dominiak and Lefort (2015) analyze the agreement and no-trade
theorems using particular forms of non-additivity (i.e., neo-additivity, which stands
for “non-extreme-outcome-"additivity) developed by Chateauneuf, Eichberger, and
Grant (2007) and Eichberger, Grant, and Kelsey (2010) and studied by Dominiak,
Eichberger, and Lefort (2012) and Dominiak and Lefort (2013). Section [2| applies
neo-additive beliefs to Rubinstein (1989)’s e-mail game. As to epistemic characteri-
zations of game-theoretic solution concepts, Dominiak and Schipper (2021) consider
rationality and common belief in rationality among Choquet-expected-utility maxi-
mizers. This paper axiomatizes a wide variety of properties of non-additive beliefs
(which enable one to focus on a role of particular properties of non-additive beliefs),
formulates the notion of common belief, and asserts the existence of a terminal belief
space.

6Fagin and Halpern (1991) study the sense in which the inner measure can be seen as a non-
additive Dempster-Shafer belief.
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Figure 1: The Component Games: The parameters satisfy L > M > 1 and p € (0, %)

2 An E-Mail Game with Non-Additive Beliefs

As a motivation to study non-additive beliefs in (epistemic) game theory, this section
considers a variant of Rubinstein (1989)’s e-mail game. I follow his setup except for
the agents’ beliefs: as it will be clear, I introduce a form of optimism that overturns
the striking result of Rubinstein (1989).

Setup of Rubinstein (1989). As in Figure [l each of two agents has to choose
one of the binary actions A or B. With probability p € (0, %), the agents play I'y;
with probability 1 — p, they play I',. It is mutually beneficial to coordinate in both
component games, but which action to coordinate on depends on the component
game: namely, (A, A) in I, and (B, B) in I',. Assume L > M > 1.

Initially, while agent 1 is informed of the true game, agent 2 is not. They commu-
nicate through computers under the following protocol. If the game is I'y then agent
1’s computer automatically sends a message to agent 2’s computer; if the game is ',
then no message is sent. If a computer receives a message then it automatically sends
a confirmation, including the confirmation of the confirmation, and so on. With a
probability € € (0, 1), any given message does not arrive at its intended destination.
If a message does not arrive then the communication stops. Each agent’s computer
records the number of messages that it has sent.

The state space consists of a pair (¢1, g2) where ¢; is the number of messages that
agent ¢’s computer has sent:

Q={(q1,2) € NU{0})* | s =g or 1 = g2 + 1}.

At state (g, q), agent 1 sends g messages, all of which arrive at agent 2, and the ¢-th
message sent by agent 2 is lost. At state (¢ + 1, ¢) agent 1 sends ¢ + 1 messages, and
all but the last arrive at agent 2.

The prior belief 1 on the state space is defined from the technological constraints of
this environment: p is the countably-additive probability measure such that p(w) :=
u({w}) satisfies:

1(0,0) =1 —p;
(g +1,q) = pe(1 — £)* for any ¢ > 0 and;
1(g+1,q+1) = pe(l —e)**" for any ¢ > 0.
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Figure 2: The Agents’ Partitions and Type Mappings: the left panel depicts agent1’s
partition and type mapping; and the right panel depicts agent 2’s partition and type

mapping.

At each state, each agent has her (“posterior”) belief over the states. I start by
defining the information set of each agent at each state within the original setup of
Rubinstein (1989). Denote by P;(¢i1,¢2) the information set of agent ¢ at (q1,¢2),
where {P;(q1,q2) }(q1,42)c0 forms a partition of the state space €2.

Agent 1 cannot distinguish between (¢1,q; — 1) and (¢1,q1) at a state (q1, g2) with
¢1 > 1. Together with P;(0,0) = {(0,0)}, agent 1’s partition is:

{{(0,0}; U{{(¢:9), (0,0 = D}}er.

The left panel of Figure [2|illustrates P;: each cell depicts the partition cell P (¢, ¢2)
that contains (q1, ¢2).

Agent 2 cannot distinguish between (¢, ¢2) and (g2 + 1, ¢2) at a state (qi, ¢2) with
g2 > 0. Thus, agent 2’s partition is:

H(a,9), (¢ +1,9)} }¢2o0-

The right panel of Figure |2|illustrates P,: each cell depicts the partition cell Py (g1, go)
that contains (g1, ¢2).
Letting A(€2) be the set of countably-additive probability measures on €2, denote
by
7 Q — A(Q)

agent i’s type mapping that associates, with each state w, her beliefs at w:

7i(W)() = (- | Piw)).



Call 7;(w) agent i’s type at w. Note that each type 7;(q1,g2) assigns probability 1 to
the information set P;(q1,q2).

For agent 1, her type at state (0,0) is a degenerate probability measure on
P1(0,0) = {(0,0)}, as depicted in the left panel of Figure 2 At any other state,
as depicted the left panel of Figure [2, her type satisfies

l—e
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For agent 2, at any state (0,0) or (1,0), as depicted in the right panel of Figure
2] his type satisfies
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1—p+pe

At any other state, as depicted the right panel of Figure [2] his type satisfies
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For any subset E of €2, the set of states at which agent ¢ believes E with probability
1 (i.e., agent i is certain that E occurs) is:

Bl (E) :={we Q| rw)(E) > 1}.

Call B, agent i’s (probability) 1-belief operator. Section [3| provides an interactive
belief model in which each agent’s collection of (probability) p-belief operators is a
primitive. As will be seen, agents’ belief operators unpack higher-order reasoning.

Since the agents interactively reason about the game that they play, denote by
G : Q — {4, Iy} the function that assigns the game that is played:

G(0,0) =T, and G(q1,¢q2) = Iy otherwise.

Then, denote by
Go =G ({Ta}) = {(0,0)}

the event that the true game is I',. Likewise, denote by

Gy =G ({Tu}) = 2\ {(0,0)}

the event that the true game is I',. Figure [3]illustrates G, and Gj,.

With these notations in mind, at any state w = (q1,¢2) at which the true game
is Iy, i.e., at w = (0,0), agent 1 is certain (i.e., believes with probability 1) that the
true game is I', (i.e., the event G, occurs) because 71 (w)(G,) = 1, as Pi(w) C G,.
At any other state, i.e., at w € Gy, agent 1 is certain that the true game is I, (i.e.,

8
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Figure 3: Events G, and G}, and Agents’ Interactive Reasoning through 1-Belief
Operators

the event G}, occurs) because 71 (w)(Gp) = 1, as Pi(w) C Gy. In sum, as illustrated in

Figure [3]
Bﬂl.l (Ga) = Ga and B71_1 (Gb) = Gb.

For agent 2, the event that he is certain that the game is I', (i.e., the event G,
occurs) is, as illustrated in Figure ,

Biz(Gb) = \ {(07 0)7 (17 O)}

Thus, at each w € {(1,0),(1,1)}, agent 1 is not certain that agent 2 is certain of Gj.
This is because, as illustrated in Figure [3]

B71-1371-2 (Gb) = \ {(07 O)? (17 0)7 (17 1)}

Similarly, in each of the states (1,1) and (2, 1), agent 2 is certain that the game is I';
but is not certain that agent 1 is certain that agent 2 is certain that the game is I';.
In this way, one can unpack higher-order beliefs through belief operators.

A strategy of agent i is defined as a mapping o; : Q@ — {A, B} which is measurable
with respect to her partition. That is,

oi(w) = 0;(w') if W € Pi(w).

Since Py(w) = {@w € Q| 7;(®) = 7;(w)}, the measurability condition states that agent i
plays the same action at states she cannot distinguish based on her beliefs 7;. Denote
by o = (01, 09) a strategy profile.
A strategy profile o* is an equilibrium if, for any agent ¢ and any strategy o; of
agent 1,
U, (0" |w) > U, (0,07, | w) for all w €

k3

9



where, denoting by wu;(- | @) agent i’s component-game payoff function at state @,
U, (0 |w) is agent i’s expected utility from the strategy profile o with respect to her

belief 7;(w):
Un(o |w) = ui(o(@) | &)7(w)({&))-
weS
So far, while the setup is identical to that of Rubinstein (1989), I have introduced
the agents’ type mappings and 1-belief operators to see that iterating the agents’ 1-
belief operators represents their interactive reasoning. Rubinstein (1989)) shows that
the e-mail game has a unique equilibrium in which both agents always choose A.

Departure from Rubinstein (1989). Here instead, I apply “neo-additive” ca-
pacities (see Chateauneuf, Eichberger, and Grant, |2007; Dominiak and Lefort, 2013}
Eichberger, Grant, and Kelsey, 2010) to modify the type mapping 7;. To that end,
first, I introduce the following “possibility measure” m;: for each state w € €2 and any

subset E of 2,
| )0 fENP(w) =10
miw)(E) = {1 if ENP(w)#0"

At each state w, m;(w)(E) = 1 if and only if (hereafter, iff) agent i considers FE
possible in the sense that she assigns a positive 7;(w)-probability to E. Section
studies (general) possibility measures. Then, letting 6 € [0,1), I consider a new type
mapping t;, where

ti(w)(E) = om(w)(E) + (1 — )1 (w)(E).

Three remarks are in order. First, the case with 6 = 0 corresponds to the original
Rubinstein (1989) e-mail game. Second, letting

Bi(E) = {w € Q| t;(w)(E) > 1} for each subset E of ,

one has
1 _ pl
Bti = Bn_.

Third, t;(w)(+) := 0mi(w)(:) + (1 — §)7(w)(-) conforms to a “neo-additive” capacity in
the sense of Chateauneuf, Eichberger, and Grant (2007, Definition 3.3).

Agent i’s strategy o; : @ — {A, B} is defined as before: o;(w) = o;(w') if W' €
P;(w). Since Pi(w) = {@w € Q| t;(@) = t;(w)}, the measurability condition states that
agent ¢ plays the same action at states she cannot distinguish based on her beliefs ¢;.

A strategy profile o* is an equilibrium if, for any agent ¢ and any strategy o; of
agent 1,

Uy (0" |w) > U, (0i,0%; | w) for all w € Q,

10



where Uy, (0 | w) is agent i’s Choquet expected utility from the strategy profile o with
respect to her belief ¢;(w):

Uy(o |w) =38 max u;(c(®) | @)+ (1—19) Zuz(a(d)) | 0)7i(w)({©}). (1)

(I)GPZ‘(w)

As it can be seen from the first term, while § measures the degree of ambiguity,
each agent is ambiguity-loving. Rubinstein (1989)’s original strategy profile is still an
equilibrium for any 0 because if the opponent always plays A then always taking A
also maximizes the first term of agent i’s (Choquet) expected utility function. Yet, I
assert below that if ¢ is high enough then there exists another equilibrium in which the
agents succeed in playing B as long as both receive at least one message. Formally:

Proposition 1. If § > %JFLL, then the following strategy profile o is an equilibrium

irrespective of €: agent i plays 0;(q1,q2) = B iff i > 1.

Before proving the claim, in this equilibrium, agent 1 plays A (resp. B) whenever
she is certain that the game is I, (resp. I';), and agent 2 plays A if and only if he
does not receive the first message by agent 1. In other words, the claim states that if
the agents are sufficiently optimistic then there exists an equilibrium in which each
agent ¢ plays B iff at least one message has been received.

Proof of Proposition[]. Consider state w = (0,0). Observe Pj(w) = {w}. Given
02(0,0) = A, following o, yields the best payoff M to agent 1 at w = (0, 0).

If agent 2 gets no message, then he is certain that either agent 1 did not send a
message or the message that agent 1 sent did not arrive. If agent 2 chooses A, then,
since agent 1 chooses A in the state (0,0), agent 2’s Choquet expected utility is at

least .
—p
) 1—-4)——— | M
( * )1—p+p€)

whatever agent 1 chooses in the state (1,0). If agent 2 chooses B, then his payoff is

at most )
— €
M+ (1-0)(—2—(—p)+ — ),
1—p+pe 1—p—+pe

where the first term comes from the fact that agent 1 plays B at the state (1,0).
Since § < 1, pe < % <1l—p,and L > M > 1, it is strictly optimal for agent 2 to
choose A.

Consider w = (q1, q2) with ¢; > 1. Consider agent 1’s decision when she sends ¢;
messages. In this case, agent 1 is uncertain whether ¢ = ¢ or ¢ = ¢; — 1. If she
chooses B, then, since agent 2 plays B when ¢y = ¢, agent 1’s expected payoff is at

least . )
SM + (1—96) (—(—L) o

— 2_6M)26M+(1—5)(—L).

11



If she chooses A, then, since agent 1 is certain of Gy, her payoff is at most 1. If
o> AZLJFLL, then playing B by following oy is a best response.

Consider w = (g1, q2) with go > 1. Consider agent 2’s decision when he sends ¢
messages. In this case, agent 2 is uncertain whether q; = g2 or ¢ = g2+ 1. Agent 2 is
certain that the game is G and agent 1 plays B at w. Thus, playing B by following

09 is a best response. The proof is complete. O

This example shows that the consideration of non-additive beliefs may bring a
novel insight into epistemic game theory. In Rubinstein (1989), each agent i is not
certain whether her own message or the confirmation by the opponent gets astray.
Since agent ¢ assigns a higher probability to the event that her own message has
been lost, she ends up playing A. In contrast, when agent i’s type is modulated
by the possibility measure m;, she considers it possible that her own message has
been received by the opponent. Thus, she takes into account the possibility that the
opponent, who has received a message, takes action B. When 0 is high enough, this
becomes of the first-order effect.

The above argument is one possible departure from the standard expected-utility
maximization framework and there are many possible ways in which non-additivity
yields new insights. To develop an interactive belief model with non-additivity, the
rest of the paper develops an interactive belief model in which agents’ beliefs are
non-additive.

3 Representations of Non-Additive Beliefs

This section lays out the framework of the rest of the paper. Section defines a
state space on which to represent agents’ quantitative beliefs. Sections and
provide two representations of agents’ beliefs: a type mapping and p-belief operators.
Proposition |2 is the benchmark result establishing the equivalence between these
two representations without imposing any property on agents’ beliefs. Specifically,
it identifies the conditions on p-belief operators which recover an underlying type

mapping.

3.1 A State Space

This subsection defines a state space on which agents’ beliefs are represented. A state
space is a pair (€2, D) where € is a set of states of the world and D is a subcollection

"In fact, o is a best response if

5o LH@—M)+(M—1)
- M+ L '

Since M > 1, the right-hand side is increasing in €. Thus, if § > Al/[':_LL (as in the statement of
Proposition 7 then the above condition holds irrespective of €.

12



of the power set P(€2) about which agents reason. Call each £ € D an event. |
assume that D forms an algebra on Q: (i) {0, Q} C D; (ii) £ € D implies E¢ € D;
and (iii) {F, F'} C D implies {E N F, E U F} C D. First, the tautology in the form
of the entire set and the contradiction in the form of the empty set are an object of
agents’ interactive beliefs. Second, if F is an object of agents’ beliefs, then so is its
complement (negation) E°. For ease of notation, I sometimes denote the complement
of E also by —F. Third, if £ and F' are an object of interactive beliefs, then so are
its intersection (conjunction) £ N F and union (disjunction) £ U F'. Special cases are
when D is a g-algebra or D = P(2). For example, some literature works with the
power set algebra (e.g., Dempster-Shafer beliefs and possibility beliefs).

With the state space formally defined, I move on to defining the framework for
representing agents’ interactive beliefs on a state space. For the rest of this section, fix
a state space (€2, D). Agents are reasoning about some aspects of states 2, and their
objects of reasoning are represented by D. In order to focus on the representation of
beliefs itself, the rest of this section focuses on a single agent.

3.2 A Type Mapping

This paper considers two representations of the agent’s beliefs. This subsection studies
the first representation: a type mapping. The type mapping t associates, with each
state w € 2, her type t(w). Her type t(w) is a set function from D into [0, 1]. Denote
by [0,1]P the collection of set functions from D into [0, 1].

Let M(£2) be a generic subset of [0,1]P which captures properties of the agent’s
beliefs. Thus, the specific feature of M(§2) depends on the properties of beliefs im-
posed by the analysts. For example, if the analysts assume that the agent possesses
the standard countably-additive probabilistic beliefs on (£, D), then M (Q) is the set
of countably-additive probability measures on (€2, D). If, in contrast, the analysts
consider non-additive probability measures (precisely, capacities) p : D — [0, 1] such
that

pu@) =0<wFE) <p(F) <1=pu) for any E, F € D with E C F,

then M (Q) is the set of capacities. Thus, at this point I do not explicitly add any
particular property (Section 4| studies particular properties). Instead, I consider a
generic subset M (Q) of [0, 1]P.

Next, given M (), let Dy, be the smallest algebra on M () including

Hp e M(Q) | u(E) > p} € P(M(2))
{{n e M(Q) | W(E) <p} € P(M())

(Ep)eDx 0,1 and  (2)
| (E,p) € Dx[0,1]}. (3)
While {u € M(Q2) | u(E) > p} is a collection of beliefs (set functions) such that the
belief in F is at least p, {u € M(Q) | u(E) < p} is a collection of beliefs such that
the belief in E is at most p. Thus, D), is endowed with the structure which makes it
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possible to examine whether the agent’s belief in an event E € D is at least p € [0, 1]
and whether her belief in F is at most p. Note that D, is equivalently generated by
sets of the form

{pe M) | pu(E)>p}and {upe M(Q) | u(E) > p} for some (E,p) € D x [0,1].
Given t : Q — M (), define its dual £ : Q — [0, 1] by
t(-)(E):=1—t(-)(E°) for each E € D.

Ift:Q— M(Q), then t : (Q2,D) — (M(2),Dyy) is measurable iff so is ¢ : (2, D) —
(M(£2), Dyy). This is because

P ({ne MQ) | p(B) > p}) =t ({p € M(Q) | p(E°) <1—p}) € D and
t({pe MQ) | u(E) <p}) =t ({neMQ)|uE)>1-p})eD.

Remark 1. The algebra D), differs from the standard case in which the type mapping
t: Q — M(Q) associates, with each state, the corresponding countably-additive
probability measure on (£, D) (i.e., M (1) is the set of countably-additive probability
measures on (2, D)) as in Heifetz and Samet (1998): they introduce a o-algebra on
M (£2) by the one that is generated from Expression . Indeed, if D is a o-algebra,
then the smallest o-algebra that includes Expression ([2)) also includes Expression ((3)
because

i€ M(Q) | w(B) < p} = (€ M) | n(B) 2 p+ -}

neN

In contrast, in the case of the algebra D), one needs to consider open measurability
(ie., t7'{p € M(Q) | u(E) > p}) € D) in addition to closed measurability (i.e.,
7 ({n € M(Q) | W(E) = p}) € D).

With these definitions in mind, a mapping ¢t : Q@ — M() is the agent’s type
mapping if t : (Q,D) — (M(Q), D)) is measurable. For each state w € , call
t(w) € M() the agent’s type at w. The agent p-believes an event E at a state w if

Hw)(E) = p,

i.e., she assigns probability at least p to E according to her type at w.

Thus, a mapping ¢t : Q — M(Q) is a type mapping if, for each event F € D and
probability p € [0, 1], the set of states at which her type t(w) at w assigns probability
at least p and at most p both form an event. For each (p, F) € [0,1] x D, define

BYE) =t ({n € M(Q) | u(B) > p}) = {w € Q[ t@)(E) = p} € Dand  (4)
L2(B) = "' ({5 € M(Q) | u(B) < p}) = {w € Q| Hw)(E) < p} € D, (5)
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Thus, BY(FE) is the event that the agent p-believes E according to her type mapping
t, and LY(FE) is the event that the agent assigns probability at most p to E according
to her type mapping ¢. Note that p-belief and dual p-belief operators BY and L} are
each a well-defined operator from D into itself by the measurability of ¢.

Three remarks are in order. First, the agent’s type mapping t induces her p-belief
operators

f?{ = (B{)pepo.)
such that each BY is defined by Expression through ¢. I will shortly introduce the

agent’s p-belief operators B” := (BP),c(o,1 as a primitive of the belief model in such
a way that the p-belief operators generate the type mapping.
Second, the agent’s type mapping t induces her dual p-belief operators

172 = (Lf)pe[o,l}

(as in Heifetz and Mongin, |2001)), where L} is defined by Expression (5 through ¢.

Third, the dual p-belief operators L} can simply be expressed from B} in situations
(i) in which the agent’s beliefs are additive or (ii) in which the underlying D is a o-
algebra. Firstly, if every ¢(w) is additive (i.e., t(w)(E) + t(w)(E°) = 1 for each £ € D
or, more concisely, ¢ = t) as in Heifetz and Mongin (2001), then, since

Hw)(E%) 21— piff {(w)(E) < p,

it follows that
LP(E) = B "P(E°) for each (p, E) € [0,1] x D.

Secondly, if D is a o-algebra, then for each (p, F) € [0, 1] x D,

Q iftp=1
LE) =9 MBI (E) itpe o) (6)

I will set up a framework in a way such that, under the condition that one form of
belief operators induces a type mapping, the other form of belief operators is always
well-defined. In particular, if B? induces the type mapping (which, in turn, recovers
the original p-belief operators), then L? is also induced from BP. Thus, I can express
some properties of beliefs that involve reasoning of the form, the agent’s belief in an
event is at most p, just from the p-belief operators ﬁ

. +1
8For a given p € [0,1), let ng € N be such that p—i—nio € [0,1). Then, LY(F) = ﬂnZHO(ﬁBf ") (E).

If one defines BY(-) = () for each p > 1, then one could write L} (E) = ﬂneN(ﬂBer%)(E) for all
p € [0,1].
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3.3 A collection of p-Belief Operators

I move on to the second representation, p-belief operators: I define a collection of
p-belief operators as a primitive. The collection BP := (BP),ci01] of (the agent’s
p-belief) operators BP : D — D is regular if it satisfies the following three conditions:

1. Non-negativity: B°(E) = ;

2. p-Continuity from Below: p, 1 p implies BP"(E) | BP(FE);

3. Limit Measurability: ﬂ (~B**%)(E) € D.
nGN:er%Sl

For each p € [0, 1], call B? the agent’s p-belief operator.
The agent p-believes an event E at a state w if

w € BP(E).

For each event £ € D, the set BP(FE) denotes the event that the agent p-believes E.

Non-negativity states that the agent always believes, with probability at least
zero, any event F at any state w. The axiom of p-Continuity from Below states that,
for any increasing sequence (p,)neny With p, T p, if the agent p,-believes an event E
at w for all n € N then she p-believes E at w. Note that p-Continuity from Below
presupposes:

e p-Anti-Monotonicity: if p < q then Bi(-) C BP(.),

stating that BP is non-increasing in p. Limit Measurability is a condition which allows

for capturing the dual p-belief (i.e., the agent believes an event with probability at

most p) from p-beliefs. If D is a o-algebra, then Limit Measurability trivially holds.
For ease of exposition, let

BP(+) := () with p > 1 and BP(-) := Q with p < 0.

Then, Limit Measurability is written as: ﬂneN(ﬂBW%)(E) eD.

%
Similarly, the collection LP := (LP),cp01] of (the agent’s dual p-belief) operators
L? : D — D is regqular if it satisfies the following three conditions:

1. Unit: LNE) = Q;
2. p-Continuity from Above: p, | p implies LP~ | LP;

3. Dual Limit Measurability: ﬂ (~LP~#)(E) € D.

neNmp—1>0
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For each p € [0, 1], call L? the agent’s dual p-belief operator.

Unit states that the agent always believes, with probability at most one, any event
E at any state w. The axiom of p-Continuity from Above states that, for any non-
increasing sequence (p,)nen With p, T p, if the agent believes, with probability at
most p,, an event E at w for il)l n € N then she believes, with probability at most p,
the event E at w. Note that LP presupposes:

e p-Monotonicity: p < q implies LP(-) C L9(-),

stating that LP is non-decreasing in p. Dual Limit Measurability is a condition which
allows for capturing the p-belief (i.e., the agent believes an event with probability at
least p) from dual p-beliefs. As for Limit Measurability, if D is a o-algebra, then Dual
Limit Measurability trivially holds.

For ease of exposition, let

LP(+) :=Q with p > 1 and LP(-) := () with p < 0.

Then, Dual Limit Measurability is written as: ﬂneN(—'LP*%)(E) e D.

The main purpose of this subsection is to establish the following benchmark re-
sult by which I can characterize various forms of non-additive beliefs using p-belief
operators in Section [d The benchmark result establishes the equivalence among
representing the agent’s beliefs by a type mapping, a regular collection of p-belief
operators, and a regular collection of dual p-belief operators.

To that end, recall that a type mapping t : (2, D) — (M(Q2), D)) induces the p-
belief operators B?f through Expression 1} Conversely, a regular collection of p-belief
operators ﬁ’ induces a mapping tg : Q — M() defined as follows:

tp(w)(E) :=max{p € [0,1] | w € B?(E)} for all (p, E) € [0,1] x D. (7)

I show that the regularity conditions are the conditions that induce a well-defined
type mapping.

Proposition 2. 1. Given a type mappingt : (2, D) — (M(2), Dyr), the collection
of p-belief operators B; is well-defined and reqular.

2. Conwversely, given a regular collection ﬁ of p-belief operators, the mapping tg :
(Q,D) — (M(R2),Dyr) is a well-defined type mapping.

— =
3. Furthermore, t = tg, and B? = Bf_.

Propositionstates that the regularity conditions (i.e., Non-negativity, p-Continuity
from Below, and Limit Measurability) are the conditions on p-belief operators under
which they can be a primitive of a belief model in that they induce a type mapping:

a belief model in the form of ((£2, D), ﬁ) (where B is regular) and a belief model
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in the form of ((2,D),t) (where t : (2, D) — (M(2), D)) is measurable) are equiva-
lent. Also, Proposition [2[implies that regular p-belief operators induce a unique type
mapping: for any type mappings ¢ and ¢/, Proposition [2| implies that

%
t = iff BP = B¥,

—
where B’? corresponds to t'.

In fact, one can establish the one-to-one correspondence between a type mapping
and dual p-belief operators and the one between p-belief operators and dual p-belief

operators. To see this point, a regular collection of dual p-belief operators L? induces
a mapping t7, : Q@ — M(Q) defined as follows:

tr(w)(F) :=min{p € [0,1] | w € LP(E)} for all (p, E) € [0,1] x D. (8)
Also, I define the dual p-belief operators induced by a regular collection of p-belief
(5

b)) and :

LP(E) :={w € Q| max{q € [0,1] | w € BY(FE)} < p} for each (p, E) € [0,1] x D.

(9)
B!

Finally, 1 deﬁne_;che p-belief operators B; induced by a regular collection of dual
p-belief operators LP by combining Expressions and :

%
operators B? by combining Expressions

BY(E) :={w € Q| min{g € [0,1] |w € LY(E)} > p} for each (p, E) € [0, 1] x D.
(10)
The following proposition establishes the one-to-one-correspondences.
Proposition 3. 1. (a) Given a type mapping t : (Q,D) — (M(2),Dy), the

collection of dual p-belief operators Ly is well-defined and regular.

%
(b) Conversely, given a regular collection LP of dual p-belief operators, the
mapping tr, is a well-defined type mapping.

o
(c) Furthermore, t =ty and LP = LY .

—>
2. (a) Let B? be a regular collection of p-belief operators. Then, Zg 1s a well-
defined reqular collection of dual p-belief operators.

%
(b) Conversely, let LP be a reqular collection of dual p-belief operators. Then,
B} is a well-defined regular collection of p-belief operators.
(c) Moreover, L'y = LP and B} A = B” for all p € [0,1].
Figuredillustrates Propositions[2]and[3] The figure depicts the equivalence among
a type mapping ¢ : (2, D) — (M(2),Dys) (recall that a mapping ¢t : Q@ — M(Q) is a
type mapping if it is measurable), a regular collection of p-belief operators B?, and
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A (measurable) type mapping
t:(,D) — (M(Q),Dun)

1 Expression (7)

1 Expression (8)
J Expression (4)

J Expression (5)

Regular L, Expression (9) u Regular
p-Belief Operators BF : D — D "+ Expression (10) D dual p-belief Operators L? : D — D

Figure 4: An Illustration of Propositions [2] and [3]

a regular collection of dual p-belief operators 17’ . The figure also illustrates how one
representation induces another. - _

If a collection of p-belief operators B? is regular, then the dual collectigl LP is well-
defined and regular._l;ikewise, if a collection of dual p-belief operators L? is regular,
then the collection BP is well-defined and regular. In fact, by Limit Measurability
and Dual Limit Measurability, one can admit another set of representations.

Corollary 1. 1. ]fﬁ is reqular, then L%(-) = ﬂ(ﬂBpJ“%)(-) eD.

neN

2. [fﬁ’ is reqular, then BY(-) = ﬂ(—'Lp’%)(‘) eD.

neN

Section |4| will characterize properties of the agent’s beliefs with B7 being a prim-
itive. By virtue of the equivalence established in Proposition [2, T sometimes use the

dual p-belief operators L?a. Also, T often drop the subscripts from the type mapping,
the p-belief operator, and the dual p-belief operator (e.g., [7 instead of LY).

4 Representations of Properties of Beliefs

This section studies logical and introspective properties of beliefs. Section studies
logical properties of beliefs. The main result of this section, Theorem (1| allows for
identifying the specific conditions on p-belief operators that lead to specific forms of
non-additive beliefs such as Choquet and Dempster-Shafer beliefs. Section [4.2] studies
introspective properties of beliefs. These properties also play a role in formalizing
common p-beliefs.
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4.1 Logical Properties of Beliefs

Proposition [2| has established the benchmark equivalence between a type mapping
and a regular collection of p-belief operators. In order to extend the equivalence to a
wide variety of beliefs, I define properties of beliefs in terms of a type mapping and
p-belief operators.

I begin by defining standard properties of a set function.

Definition 1. A set function p: D — |0, 1] satisfies:
1. No-Contradiction if u(0) = 0;
2. Normalization if () = 1;
3. Monotonicity if E C F implies u(E) C u(F);
4. Sub-additivity if W(EUF) < p(E)+ p(E°NF) for any E, F € D;
5. Super-additivity if W(EUF) > uw(E) + w(E°NF) for any E, F € D;
6. Finite Additivity if p satisfies Sub-additivity and Super-additivity.

A given type mapping ¢ satisfies each property in Definition (1] if ¢(w) satisfies
it for every w € €. In Definition [ Super-additivity implies Monotonicity. Also,
Super-additivity and Normalization imply No-Contradiction.

A set function p : D — [0,1] is a Choquet (1954) capacity (or a non-additive
probability measure) if it satisfies No-Contradiction, Normalization, and Monotonicity
(sometimes, the continuity properties (from above and from below) to be introduced
in Definition [3| are assumed as well). A capacity is a finitely-additive probability
measure if it additionally satisfies Finite Additivity.

To study Dempster-Shafer beliefs (Dempster, 1967; Shafer, 1976) or possibility
beliefs (Dubois and Prade, [1988; Zadeh, |1978)), T introduce four additional properties.
To that end, let P, := P({1,...,n})\ {0} for each n € N.

Definition 2. A set function p: D — |0, 1] satisfies:
7. (a) n-Monotonicity (where n € N\ {1}) if
p (U Ej> > (- (ﬂ Ej) : (11)
j=1 JEP, jeJ
(b) oo-Monotonicity if n-Monotonicity holds for all n € N\ {1};
8. (a) Alternating n-Monotonicity (where n € N\ {1}) if

+(A5) < Zevu(Ys); 12

JEPy Jj€J
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(b) Alternating oo-Monotonicity if Alternating n-Monotonicity holds for all

n € N\ {1}
9. (a) Maxitivity if, for any {E;};e; C D with U E; € D,
jeJ
p (U Ej> < sup u(Ej);
jeJ ied

(b) Finite Maxitivity if p(E U F) < max(u(E), u(F));

10. (a) Minitivity if, for any {E;}je; C D with (] E; € D,
JjeJ

<HE>>;I€1£/LE)

JEJ
(b) Finite Minitivity if p(E'NF) > min(u(E), u(F)).

Again, a given type mapping ¢ satisfies each property in Definition [2]if ¢(w) satis-
fies it for every w € Q. First, u is a Dempster-Shafer belief function if it satisfies No-
Contradiction, Normalization, and oo-Monotonicity (“Continuity-from-above” prop-

erty to be introduced in Definition [3|is sometimes assumed). The dual set function
7 defined by

(E) =1— pu(E)
is referred to as a plausibility function. Groes et al. (1998)) study mixed-strategy Nash
equilibria when agents’ beliefs are non-additive and satisfy n-Monotonicity.

Second, p is a possibility measure if it satisfies No-Contradiction, Normalization,
Monotonicity, and Maxitivity. Each set function m;(w) in Section [2]is an example of
a possibility measure. The set function 1 is referred to as a necessity measure. It can
be seen that a possibility measure (precisely, any set function satisfying Monotonicity
and Finite Maxitivity) satisfies Alternating oco-Monotonicity. Indeed, the possibility
measure is a plausibility function (i.e., the necessity measure is a belief function).
See, for example, Halpern (2017) and Wang and Klir (2010)).

Also, qualitative belief or knowledge induced by a possibility correspondence (e.g.,
Aumann, [1976) satisfies Minitivity: the agent believes an event E (at a state) if the
event F includes the information set at that statel]

Four remarks on Definition [2| are in order. First, the “converse” weak inequality
in Finite Maxitivity, Finite Minitivity, Maxitivity, and Minitivity are all equivalent

91f the agent believes each event E; (at a state), then her information set (at the state) is included
in Ej for all j € J. Whenever (;.; E; € D (ie., it is an object of her beliefs), she believes the
conjunction (), ; E; (at the state).
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to Monotonicity. Thus, if x4 is monotone then each of them is characterized by the
equality as in the literature (e.g., Wang and Klir, 2010)).
Second, Finite Maxitivity implies Sub-additivity. Third, consider n-Monotonicity.
If n = 2 then
n(Er) + p(E2) < p(Er N Ep) 4+ p(Ey U Es).

This is sometimes referred to as Conwverity, and is associated with a notion of un-
certainty aversion (Schmeidler, 1986, 1989).E| If u satisfies n-Monotonicity, then it
satisfies k-Monotonicity for any k& < n. Also, n-Monotonicity implies Monotonicity,
given No-Contradiction ]

Fourth, consider Alternating n-Monotonicity. If n = 2 then

p(Er N Ey) + p(Ey U Ey) < p(Ey) + p(Es).

This is sometimes referred to as Concavity. If p satisfies Alternating n-Monotonicity,
then it satisfies Alternating k-Monotonicity for any k < n.
To sum up the properties of a set function, I introduce continuity properties.

Definition 3. For ease of exposition, suppose that D is a g-algebra. The set function
1 satisfies:

n—1
11. Countable Sub-additivity if p (U En> < Zu ((ﬂ Efn) N En>;

neN neN m=1

n—1
12. Countable Super-additivity if p (U En> > Zu ((ﬂ Eﬁl) N En>;

neN neN m=1

13. Countable-additivity if p satisfies Countable Sub-additivity and Countable Super-
additivity;

14. Continuity from Above if E, | E implies pu(E,) | p(E);
15. Continuity from Below if E, T E implies u(E,) T u(E).

While I have introduce the continuity properties on a o-algebra D, it is possible to
define these properties when D is an algebra by requiring the given collection (E,,)nen

to satisfy J, .y En € Dor E =), _n Fn € D. Again, a given type mapping ¢ satisfies

neN neN

0For instance, Eichberger and Kelsey (2000) assume convexity throughout their analysis of games
with non-additive beliefs.

UThe proof goes as follows. Suppose E C F. Letting (E1, Es) = (E,F \ E), it follows from
2-Monotonicity (i.e., Convexity) and No-Contradiction that

pw(F) = p(By1U Ea) > p(Er) + p(B2) — p(Ey N Ep) = w(E) + p(F\ E) > p(E).
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each property in Definition |3 if ¢(w) satisfies it for every w € . Monotonicity is
implicit in Continuity from Above and Continuity from Below. As already discussed,
a capacity is often assumed to satisfy Continuity from Above and Continuity from
Below in addition to No-Contradiction, Normalization, and Monotonicity (when D is
infinite). Also, a Dempster-Shafer belief function is also assumed to satisfy Continuity
from Above in addition to No-Contradiction, Normalization, and oo-Monotonicity
(when D is infinite).

Now, I turn to defining the corresponding properties of beliefs in terms of p-belief
operators. To that end, define M* and N¥ with J € P, = P({1,...,n}) \ {0} as

LP if |J] is odd

BP if |J| is even |

P .
J

{Bp if .7 is odd

‘ _ and N¥ :=
LP if |J] is even

First, I introduce the standard properties of beliefs that correspond to Definition
[
Definition 4. A regular collection B? of p-belief operators satisfies:

1. No-Contradiction if BP(()) = @ for any p € (0, 1];

2. Normalization if B'(Q) = Q;

3. Monotonicity if E C F implies B?(E) C BP(F);

4. Sub-additivity it LP(E)NLY(E°NF) C LPYY(EUF) for any E, F € D;

5. Super-additivity if BP(E)N BY(E°NF) C BPT(EUF) for any E, F € D;

%
6. Finite Additivity if BP satisfies Sub-additivity and Super-additivity.

Two remarks on Definition [4] in relation to the literature are in order. First, as in
Samet (2000, Section 4), Sub-additivity is equivalent to:

(-BP)(ENF)N (-BY)(E N F°) C (~B"*)(E) for any E,F € D.
Second, as in Samet (2000, Section 4), Super-additivity is restated as:
BP(ENEF)NBYENE) C BPY(E) for any E, F € D.
Next, I introduce the properties of beliefs that correspond to Definition 2]

Definition 5. A regular collection Bj of p-belief operators satisfies:
7. (a) n-Monotonicity (where n € N\ {1}) if

(N My (ﬂ Ej> C BZser (D1 7p; (O Ej> ; (13)

JeP, jeJ j=1
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(b) oo-Monotonicity if it satisfies n-Monotonicity for all n € N\ {1};

S

(b) Alternating co-Monotonicity if it satisfies Alternating n-Monotonicity for
alln e N\ {1};

8. (a) Alternating n-Monotonicity (where n € N\ {1}) if

)~y (U Ej> C BEuer, -1 (

JEPy jedJ

||D:

9. (a) Mazitivity if ﬂ LPi(E;) C LP"PiPi (U E; )7 where ;¢ E; € D;

JjeJ JjeJ

(b) Finite Mazitivity if LP(E) N LI(F) C L™>®a)(F U F);

10. (a) Minitivity if (| B (E;) C B"% (ﬂ Ej>, where (., E; € D;

jeJ jeJ
(b) Finite Minitivity if BP(E) N BY(F) C B™n®a(E N F).
In Definition [5, Finite Maxivity is restated as:
(=BP)(E) N (=BY)(F) C (~-B"™*P9)(EU F).
Finally, I introduce the properties of beliefs that correspond to Definition

Definition 6. As in Definition[3] for ease of exposition, suppose that D is a o-algebra.
A regular collection B? of p-belief operators satisfies:

11. Countable Sub-additivity if

n—1
() ) ()
neN m=1 neN

12. Countable Super-additivity if

n—1
(B ((ﬂ Em> N En> C BXenenpn (U En> :
neN m=1 neN

%
13. Countable-additivity if BP satisfies Countable Sub-additivity and Countable
Super-additivity.

14. Continuity from Above if E,, | E implies BP(E,) | B?(E);
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15. Continuity from Below if E, 1 E implies L*(E,) | L*(E).

Now, I present the main result of this section, which extends Proposition [2|to any
collection of axioms on set functions on (€2, D) defined in Definitions [1] to 3]

Theorem 1. Consider any possible combination of axiom(s) on set functions on
(Q,D) defined in Definitions[1] to[3, and let M(Q) be the collection of such set func-

tions.

1. If a measurable mapping t : (Q, D) — (M(Q),Dyy) is given, then the induced

collection By is well-defined, is regular, and satisfies the corresponding assump-

tion(s) in Definitions[{] to ¢

2. Conversely, the mapping tg : (2, D) — (M(Q), Dyr) induced by a reqular collec-

tion BP of p-belief operators respecting the given assumption(s) in Definitions

[4 to [0 is a well-defined measurable mapping which satisfies the corresponding
assumption(s) in Definitions[1] to [4.

- =

3. Furthermore, t = tp, and B? = By .

t

4.2 Introspective Properties of Beliefs

The previous subsection has characterized logical properties of beliefs. This subsection

studies the agent’s introspective properties on her own beliefs, and shows that the

introspective properties can be formulated independently of the logical properties.
In the literature, an agent is certain of her beliefs if

#Hw)(E) =1 for any (w, E) € Q x D with £ D {& € Q| t(w) = (@)}

The idea is that, at each state w, if the agent is certain of her beliefs, then she must
be able to infer that the true state is in one of {& € 2| t(w) = t(©)}. For instance, in
the literature on the construction of a terminal belief space, Fukuda (2024a}, 2025b),
Meier (2006), and Mertens and Zamir (1985 impose this property.H

As is well-known in the literature, if the agent is certain of her beliefs then the
following two introspective properties hold (for all p € [0, 1])H

1. Positive Certainty: BF(-) C B*BP(-).

2. Negative Certainty: (=BP)(-) C BY(—=BP)(-).

12Tn different contexts, papers such as Fukuda (2025a) and Samet (1999, 2000) provide epistemic
characterizations of this property.

13The converse holds, for example, under the following environment: D is a o-algebra generated
by a countable algebra and every ¢;(w) is a countably-additive probability measure (Samet, [1999)).
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While the literature assumes that each type ¢(w) is at least a finitely-additive measure,
it can be seen from Expressions and that one can formalize/rewrite these
properties as follows.

1. Positive Certainty holds iff, for any (E,p) € D x [0, 1] with t(w)(E) > p,
I=tw)({weQ|p<Uw)(E)}) (15)
2. Negative Certainty holds iff, for any (E,p) € D x [0, 1] with t(w)(F) < p,

I=tw)({we Q| Hw)(E) <p}). (16)

Here, I study the following two weaker introspective properties, Positive Intro-
spection and Negative Introspection, whenever each #(w) is a set function and inde-
pendently from the logical properties. Positive Introspection states that if the agent
p-believes an event then she p-believes that she p-believes it. In contrast, Negative
Introspection states that if the agent does not p-believe an event, then she p-believes
that she does not p-believe it.

Lemma 1. 3. Positive Introspection: BP(-) C BPBP(-) iff

Hw)(B) < tw)({@ € Q | Hw)(E) < t@)(E)}) for all (w, E) € Q x D.

4. Negative Introspection: (—BP)(-) C BP(—~BP)(-) iff
tw)(E)+e <tlw)({w e Q| t(@)(F) < t(w)(E) +¢c})
forallwe Q, E€D, ande € (0,1 —t(w)(E)].

Heifetz and Mongin (2001]) characterize introspective properties of 1-belief (i.e.,
certainty) operators:

B'() € B'B'(-) and (=B')(-) € B'(=B")(").

These properties can also be characterized by putting p = 1 in Expressions and

, respectively.
To conclude this subsection, I study Subpotency: if the agent p-believes that

she p-believes an event then she p-believes it. Thus, Subpotency is the converse
of Positive Introspection. Section [5.1] studies the implication of Subpotency on the
iterative formulation of common belief.

Proposition 4. 1. Subpotency: B?BP(-) C BP(-) iff
tw)(E) = p

for any (w, E,p) € Q x D x [0,1] with t(w)({w € Q| t(®)(E) > p}) > p.
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_>
2. If a regular collection B of p-belief operators satisfies No-Contradiction, Nor-
malization, 2-Monotonicity (i.e., Convezity), and Negative Certainty, then it
satisfies Subpotency.

The first part of the proposition states that one can formalize Subpotency solely
in terms of the type mapping. The second part implies that if the agent’s beliefs
are represented by a type mapping t such that each t(w) is a convex capacity and
such that ¢ satisfies Negative Certainty (i.e., the agent is introspective about the lack
of her own beliefs) then her type mapping also satisfies Subpotency. The result in
Section [5.1] shows that, in such a setting, the common p-belief operator reduces to
the iteration of mutual p-belief operators.

The introspective properties in this subsection enable the analysts to study be-
liefs of agents who are introspective about their own beliefs by restricting attention to
beliefs (either type mappings or p-belief operators) which satisfy the above introspec-
tive properties. Note that these characterizations hold irrespective of any underlying
logical properties of beliefs.

5 Applications

This section discusses applications of the framework of this paper. Since the Intro-
duction has discussed possible applications to epistemic analyses of game-theoretic
solution concepts and the agreeing-to-disagree and no-trade theorems and Section
has analyzed Rubinstein (1989)’s e-mail game with non-additive beliefs, this section
discusses other applications. Specifically, Section defines the multi-agent frame-
work including common p-beliefs. Section demonstrates that the framework of
this paper admits a terminal belief space. Section [5.3| considers the extension to
conditional beliefs.

5.1 Common p-Belief

Throughout this subsection, let I be an at-most countable set of agents with || > 2.

In this subsection, a model refers to a tuple ((€2, D), (B?F)ie[, Cm with the following
three ingredients. First, (€2, D) is a measurable state space: I assume that D is a o-
algebra so as to ensure that the iterations of mutual p-beliefs are always well-defined.

Second, for each agent i € I, Bj; = (BY)pepo,1) is a regular collection of agent i’s
p-belief operators. Define the mutual p-belief operators (BY)pep,1] as

BY(-) == ﬂBf() for each p € [0, 1].

iel
Call an event F' € D a common p-basis (Fukuda, 2020 if

F C E implies F' C BY(E).
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That is, F' is a common p-basis if everybody p-believes any logical consequence of
F. Note that, when the mutual p-belief operator B} satisfies Monotonicity, an event
F € D is a common p-basis iff it is a p-evident event (e.g., Monderer and Samet,
1989): F C BY(F).

Third, C? = (CP),cp,1) is a collection of common p-belief operators C? : D — D
defined as follows (e.g., Fukuda, 2020; Monderer and Samet, [1989): for each E € D,

CP(E) := {w € Q| there is a common p-basis F' € D with w € F' C BY(E)} € D.
By construction, the common p-belief implies any level of mutual p-beliefs:
CP(-) C (BY)"(-) for any n € N.

Denoting by
BI(-) = () (BD)"(-)
neN
the iterative common p-belief operator, it follows that

Cr() € BY(-).

That is, if an event E is common p-belief, then everybody p-believes E, everybody
p-believes that everybody p-believes E, and so on ad infinitum.

Now, if each agent’s p-belief operators satisfy the logical and introspective prop-
erties of Monotonicity, Subpotency, and Continuity from Above, then the common
p-belief operator CP coincides with the iterative common p-belief operator B? (Mon-
derer and Samet, 1989, Proposition 4).

Remark 2. Suppose that, for every agent ¢ € I, Bﬁ; satisfies Monotonicity, Subpo-
tency, and Continuity from Above. Then, C? = B? (for all p € [0, 1]).

5.2 Terminal Non-Additive Belief Spaces

This subsection aims at showing the existence of a terminal non-additive belief space.
To that end, let I be a set of agents with |I| > 2, and let S be a set of states of
nature endowed with an algebra & on S. The states of nature are exogenously given
parameter values such as strategies or payoffs about which agents interactively reason.
Also, fix a possible combination of properties of (non-additive) beliefs specified in
Definitions [, 5 and [6]

With these definitions in mind, a belief space of I over (S,S) is a tuple 0 =
(2, D), (BY)iperxpa, ©) with the following three properties.

1. Qs a set of states of the world, endowed with an algebra D on (2.

2. For each agent i, l?; , where BY : D — D, is agent i’s regular collection of
p-belief operators that satisfies the given assumptions on beliefs.
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3. ©:(Q,D) — (5,8) is a measurable mapping that associates, with each state
of the world, the corresponding state of nature.

One can define the class of belief spaces, depending on the choice of the assumptions on
beliefs. Note that, by Theorem [T}, even if one starts by defining a belief space through
the agents’ type mappings, one can equivalently define the belief space through p-
belief operators. While, for ease of exposition, I omit introducing the common belief
operator from a belief space, one can incorporate the common p-belief operators into
the definition of a belief spacel]

In the belief space €2, the analysts can represent the agents’ first- and higher-
order beliefs about (S,S) through © and the agents’ belief operators (B}) p)erx(0,1]-
For any E € S, the agents’ first-order beliefs are represented by BY(©7!(F)), their
second-order beliefs are represented by BY B} (©~"(F)), and so on.

A terminal belief space is defined as a belief space to which every belief space in the
given class is uniquely mapped in a belief-preserving manner. I start by formalizing
the notion of a behef preserving map, a belief morphlsm

Namely, let [ ((Q2,D), (BY)(ip)crxo,1, ©) and Q/ (Y, D), (BY)iperxio, ©)

% 7
be belief spaces (of the given class). A belief morphism ¢ : Q@ — €' is a measurable

map ¢ : (Q,D) — (', D) satisfying the following two conditions:
1. © =0 oy;
2. BY(¢o~YE") = ¢ YBP(E")) for each (i,p, E') € I x [0,1] x D'.

The belief morphism ¢ associates, with each state w € 2, the corresponding state
p(w) € Q' with the two conditions. The first condition requires that the same state
of nature prevail between two states w and ¢(w). The second condition states that
the agents’ p-beliefs are preserved from one space to another: agent ¢ p-believes an
event £’ at p(w) iff she p-believes o~ !(E’) at w.

For any belief space ﬁ the identity map idg on €2 is a belief morphism from Q

into itself. Next, call a belief morphism ¢ : Q@ — Q' a belief isomorphism, if ¢ is

bijective and its inverse ¢! is a morphism. If ¢ is an isomorphism then its inverse
4,0*1 is un _c;ue Belief spaces €1 and Q' are isomorphic, if there is an isomorphism
Y Q — .

Now, I define 2 terminal belief space. Namely a belief space Q is termmal if, for

any belief space Q (in the class), there is a unique morphism ¢ : € — Q*

Proposition 5. Fiz a combination of properties of beliefs specified in Definitions [4),
[3, and [0l This defines the class of belie]:)spaces respecting the specified properties.
Then, there exists a terminal belief space Q2* in the given class.

Under certain assumptions (e.g., D is a o-algebra and the agent’s p-belief operators satisfies the
properties in Remark , the common p-belief operator can be expressed in terms of the agents’
p-belief operators.
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In the context of this paper, the proposition follows from Fukuda (2024b, Section
5.1), which shows the existence of a terminal belief space irrespective of properties of
beliefs once the properties of beliefs are represented through belief operators. Since
Theorem [I] shows that various non-additive beliefs can be represented through p-belief
operators, one can apply the arguments in Fukuda (2024b|, Section 5.1) to the context
of this paper to assert the existence of a terminal belief space.

In epistemic game theory, a terminal belief space is used to characterize certain
solution concepts such as iterated elimination of strictly dominated actions (as an
implication of rationality and common belief in rationality). It would be interesting
to study an implication of rationality and common belief in rationality on a terminal
belief space in the context of non-additive beliefs (see Dominiak and Schipper (2021))
in this direction).

5.3 Conditional Non-Additive Beliefs

This subsection studies conditional non-additive beliefs represented by a conditional
belief system. The conditional belief system specifies an agent’s belief in an event
conditional on each conditioning event. Rényi (1955) axiomatizes a conditional prob-
ability system that specifies countably-additive probabilistic beliefs on conditioning
eventsE] Thus, a conditional type mapping is a mapping that associates, with each
state of the world, a conditional belief system. Di Tillio, Halpern, and Samet (2014,
Theorem 1) identify conditions on conditional p-belief operators under which they
induce a conditional type mapping.

First, this subsection introduces conditional beliefs at an abstract level in line with
the analyses in Section [3| Second, it replicates Di Tillio, Halpern, and Samet (2014,
Theorem 1). Third, it formulates conditional belief systems for possibility measures.

5.3.1 Conditional Type Mappings and Conditional p-Belief Operators

Throughout the subsection, fix a tuple (€2, D,C): D is an algebra on a set €2; and C is
a non-empty sub-collection D with () ¢ C. While various set-algebraic assumptions on
C are imposed in the literature, I simply consider the case with ) € C C D. Let M ()
be a subset of [0, 1] such that each element u € M (£2) satisfies some given properties
of conditional beliefs irrespective of conditioning events (recall Section E]

Let MC(Q) := (M(Q))¢ be the product of M(Q) over C, and denote by 7 :=
(1(-]C))cec a profile of set functions in MC(Q). Call I a conditional set function.
For ease of notation, letting Mc(Q) := M(€2), denote M¢(Q) = [Toee Mc(9).

15Battigalli and Siniscalchi (1999) and Guarino (2017, 2024) construct a terminal type space based
on a conditional probability systems.

161 will define a conditional set function 77 as 7 := (u(- | C))cec, where u(- | €) is a set function
defined on D conditional on a conditioning event C € C. I define M(£2) as the collection of set
functions on D which satisfy a given combination of properties (recall Section irrespective of
conditioning events C' € C.
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I introduce the product algebra D$, on M¢(Q)). Namely, denoting by pry :
MC(Q2) — Mc(R2) the projection, DS, is the smallest algebra including

pre' ({n € M(Q) | i(E) > p}) and pre' ({u € M(Q) | u(E) < p})

for every (C, E,p) € C x D x [0,1].

For a given property of a set function in Definitions [I] to 3] a conditional set
function 77 := (u(-|C))cec € MC(Q) satisfies it if every pu(-|C) satisfies it. For
example, 7 satisfies No-Contradiction if

wu(0|C) =0 for all C € C.

A conditional type mapping is a measurable mapping
7 (Q,D) » (MYQ), D5,)

denoted by _

t = (t()(1C))cec
Namely, for each (C, E,p) € C x D x [0, 1],

BY(E|C) :={w € Q| t(w)(E|C) > p} € D]
A collection of conditional p-belief operators is
B = (B"(C))emecxion

such that BP(-|C) : D — D for every (C,p) € C x [0,1]. It is regular if

B(|C) = (B¥(-1C))pefo,y

is regular for every C' € C. For each property in Definitions [ to[6] a regular collection
of conditional p-belief operators satisfies the property if B?(-|C') satisfies it for every

C € C. Similarly, one can define the dual conditional p-belief operators LP.
The analysis in Section [3| implies: a conditional type mapping ¢ induces the

regular collection of conditional p-belief operators B;; and in turn, a regular collection

of conditional p-belief operators B; induces the conditional type mapping ¢ : for each
(w,C,E) € Q2 xCxD,

tp(w)(E | C) = max{p € [0,1] |w € B*(E | C)}.

I7Tf each conditional p-belief BY(E|C) is required to be a conditional event, then a stronger
“measurability” condition with respect to C has to be imposed: for all (C, E,p) € C x D x [0, 1],

BY(E|C) € C.

This paper, however, does not consider this case.
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Moreover, given ﬁ’, for all (C,E) € C x D,
BYE|C)={weQ|tpw)(£|C)=>p}t=DB (E]|C);
and given ?, for all (w,C,E) € QxC xD,
tw)(E | C) =max{p € [0,1] |w € BY(E | C)} = tp,(w)(E | C).

5.3.2 Conditional Probability Systems

[ first revisit Di Tillio, Halpern, and Samet (2014, Theorem 1) by introducing two
new axioms on conditional beliefs for both conditional set functions and conditional
p-belief operators. The first axiom on a conditional set function ﬁ is Normality:

uw(C|C) =1 for all C €C.
The second is the Chain Rule: for any (C,D,E) € C xC x D with E C D C C,
p(E|C) = u(E|D)u(D|C). (17)

In the literature, 77 is a (countably-additive) conditional probability system (Rényi,
1955)) if it satisfies Normality, the Chain Rule, Normalization, and each u(- | C) is a
countably-additive probability measure on (2, D).

Remark 3. If 7 satisfies Normality and Finite Additivity, then it satisfies the Chain
Rule iff, for any (C,D,E) € C xC x D with EC D C C,

W(E|C) > u(E|D)u(D|C)[F (18)
Generally, if one does not impose Finite Additivity, then the Chain rule can be de-
composed into the “<” and “>” parts.

As in Di Tillio, Halpern, and Samet (2014, Theorem 1), I now formulate the
corresponding properties in terms of a collection of conditional p-belief operators.

First, BP satisfies Normality if
BY(C]C) = Q for all C € C.

Second, ﬁ’ satisfies the Chain Rule if, for any (C, D, E) € CxCxD with E C D C C,
BP(E|D)Nn BYD|C) C BP(E|C); and (19)

LP(E|D)Nn LY(D|C) C LPY(E|C). (20)

Here, the formalization of the Chain Rule by conditional p-belief operators is

slightly different from that of Di Tillio, Halpern, and Samet (2014, Theorem 1) in the
sense that they only require Expression . This is because, as implied by Remark

, if Bp satisfies Normality and Finite Additivity, then it satisfies the Chain Rule,
i.e., Expression (18)), iff Expression (19) holds. The other part (i.e., the “<” part) of
the Chain Rule (i.e., Expression ) holds iff Expression holds. In sum,

18For completeness, the Appendix provides the proof.
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Remark 4. 1. A conditional type mapping ¢ satisfies Normality iff B? satisfies
it.

2. A conditional type mapping t satisfies the Chain Rule iff ﬁ satisfies Expres-

sions and .

I make additional remarks on the Chain Rule.

Remark 5. 1. (a) As in the literature (e.g., Halpern, 2017; Rényi, |1955), the
Chain Rule can be restated as the following stronger form: for any (C, D, F) €
CxDxDwith DNC €C,

u(E N DIC) = u(E|D 1 O)u(DIC) [T (21)

(b) This stronger form of the Chain Rule can be expressed as follows: for any
(C,D,E)eCxDxDwith DNC €,

BP(E|D N C)N BYD|C) C B"(EN D|C): and
[P(E|DNC)N LYD|C) C L*(E N D|C).

2. (a) Under Normality, ﬁ satisfies this stronger form of the Chain Rule iff it
satisfies the Chain Rule and Relativization:

p(E|C) = w(ENC|C) for all (E,C) € D xC. (22)
(b) Relativization is expressed as:
BP(E|C) = B*(ENC|C) for all (p,C,E) € [0,1] x C x D[

Di Tillio, Halpern, and Samet (2014) apply introspective properties of conditional
beliefs to game-theoretic analyses of extensive-form games. As in Sections and
, one can study introspective properties of conditional (non-additive) beliefs and
conditional common p-beliefs. As in Section [5.2] one can also consider a terminal
conditional non-additive belief space.

5.3.3 Conditional Possibility Measures

Next, I consider conditional possibility measures. A conditional set function ﬁ is
a conditional possibility measure (Dubois and Prade, |1998; Halpern, [2017; Hisdal,
1978) if it satisfies:

1. No-Contradiction;

YNote that if E C D C C then DN C = D and Expression 1) reduces to Expression .
20For completeness, the Appendix provides the proof of Part (2) of this remark.

33



2. Normality;

3. Maxitivity; and

4. The Possibility Chain Rule: for all (E,D,C) € D x D x C with DNC € C,
u(E 0 DIC) = min(u(E|D 0 C), u(D|C). (23)

Intuitively, in the Possibility Chain Rule, the minimum of u(E|D N C) and u(D|C)
is taken instead of the product.

The Possibility Chain Rule can be expressed in terms of conditional p-belief op-
erators as follows: for any (C,D,E) € C xC x D with E C D C C,

BP(D|C) N BY(E|C N D) C B™®9)(F N D|C); and
L(D|C) N LY(E|C N D) C L™"®9(EN D|C).

The characterization for the Possibility Chain Rule can be obtained by replacing pq
with min(p, ¢) in the characterization for the Chain Rule.

Remark 6. Under Relativization, the Possibility Chain Rule can be expressed as
follows: for all (C,D,E) € C xC x D with E C D C C,

u(E|C) = min(u(E|D), (D|C)) F] (24)

6 Concluding Remarks

In an interactive belief model, p-belief operators provide a convenient way to capture
interactive higher-order beliefs. This paper studies representations of non-additive
beliefs through p-belief operators. Section [2] studies the variant of Rubinstein (1989)
e-mail game with non-additive beliefs in which the agents may succeed in coordi-
nating when they receive a single message. Then, Section |3| provides the conditions
on p-belief operators under which an agent’s underlying type mapping is recovered
(Proposition [2). Building on this benchmark result, Section [4] shows that one can
axiomatize an interactive belief model that satisfies various logical and introspective
properties of beliefs in terms of p-belief operators (Theorem [I)). As a result, the
paper demonstrates that one can analyze a wide variety of non-additive beliefs by
p-belief operators. Examples include Choquet capacities, Dempster-Shafer beliefs,
and possibility measures. The paper provides a foundation for studies of interactive
beliefs such as implications of common belief when agents’ beliefs are non-additive.
As applications, Section [5| shows that one can incorporate common p-beliefs and that
there exists a terminal belief space when agents’ beliefs are non-additive. Section
discusses an extension to conditional beliefs. This paper leaves several avenues for fu-
ture research such as the characterization of a common prior and/or the introduction
of unawareness.

21For completeness, the Appeneix provides the proof.
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A  Proofs

A.1 Section [3.3

Proof of Proposition[d. 1. Lett: (Q,D) — (M(Q), Dy) be a type mapping. Since
t:(Q,D) — (M(S),Dy) is measurable, it follows that

BY(E) = {w e Q| tw)(E) > p} € D for all E € D.

That is, BY : D — D is well-defined. Thus, I show that ?{ is regular.
First, t(-)(E) > 0 implies
BY(E) = {w € Q| tw)(E) > 0} = .
Second, I start by observing p-Anti-Monotonicity: if p < ¢ then
BI(E) = {w € Q| H{w)(E) > g} C {w € Q| tw)(E) > p} = BI(E).
Now, suppose p, T p. Since p > p, for all n € N, it follows that

BI(E) C [ BI"(E).

neN
If we N,en B (E), then
t(w)(E) > p, for all n € N.

Letting n — oo yields t(w)(E) > p, i.e., w € BY(E).
Third, I have:

N B 4)(E) = (e € Q| Hw)(E) <p+ )

={weQ[tw)(E) <p}eD,

where the last set containment follows because ¢ : (2,D) — (M(Q2),Dy) is
measurable.

2. Conversely, let ﬁ be regular. First, by Non-negativity,

0e{pe|0,1] |we BP(E)} #0.

Second, I show that {p € [0,1] | w € BP(E)} = [0,q|, where, by the previous
argument,
q:=sup{p € [0,1] |w € B*(E)} € [0,1].
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Let (gn)nen be such that ¢, T ¢ and w € B (F) for all n € N. By p-Continuity
from Below,
we () B"(E) = BYE).
neN

Also, p-Continuity from Below implies p-Anti-Monotonicity, and thus
{pel0,1]|we B (E)} =04

Hence, tp(w)(E) is well-defined for all (w, E) € Q x D.
Third, T show that tp : (2, D) — (M(R), D)) is measurable. For any (p, F) €
0,1] x D,

(t5) " ({n € M(Q) | w(E) = p}) = {w € Q| tp(w)(E) > p} = B"(E) € D.

Also, for any (p, E) € [0,1] x D,

(t5) " ([ € M(Q) | 4(B) < p}) = (V{w € Q| tp()(E) < p+ )

neN

= (=B ")(E) € D,

neN
where the last set containment follows from Limit Measurability.
3. Finally, w € Bf_(E) iff tp(w)(£) > p iff w € BP(E). Also,

t5,(@)(E) = max{p € [0, 1] |w € BY(E)}
— max{p € [0, 1] | t(w)(E) = p} = t(w)(E).

[]

Proof of Proposition[3. The proof of Part is similar to that of Proposition .
Somewhat roughly, it suffices to replace By and each axiom (Non-negativity, p-
Continuity from Below, and Limit Measurability), respectively, with L{ and the cor-
responding axiom (Unit, p-Continuity from Above, and Dual Limit Measurability).

Hence, I only prove Part |) First, suppose that ﬁ is regular. Since L}, = LY,

it follows from Propositions and that Lz is well-defined and regular.
Second, suppose that L? is regular. Since B} = By , it follows from Propositions

and that ?L is well-defined and regular.
Third, I show B} = BP. Suppose w € BP(E). Since one has

p <max{q € [0,1] |w € BYE)},
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it follows that

p <min{r € [0,1] | max{q € [0,1] | w € BY(E)} <r}
=min{r € [0,1] |w € L3(E)}.

Thus, w € B} _(E). Conversely, suppose that w € B} (£). Then,

p <min{q € [0,1] | w € LE(E)}
=min{q € [0,1] | max{r € [0,1] |w € B"(E)} < q}
=max{r € [0,1] |w e B"(E)}.

Thus, w € BP(E).
Fourth, in a similar way, I show Lz = LP. Suppose w € LP(E). Since one has

p>min{q € [0,1] | w € LY(E)},
it follows that

p > max{r € [0,1] | min{q € [0,1] |w € LYE)} > r}
=max{r € [0,1] | w € B} (E)}.

Thus, w € L'z (E). Conversely, suppose that w € L (E). Then,

p>max{q € [0,1] |w € BI(E)}
= max{q € [0,1] | min{r € [0,1] |w € L"(E)} > ¢}
=min{r € [0,1] |w € L"(E)}.

Thus, w € LP(E). O

%
Proof of Corollary[1. ~ 1. Assume that B? is regular. For each (p, E) € [0,1] x D,
one has:

Lp(E) ={w € Q[ tp(w)(E) < p}

= e e Qtp@)(B) <pt+ -} = ((~B*4)(E) € D

neN neN

2. Assume that LP is regular. For each (p, E') € [0,1] x D, one has:
B(E) ={w € Q| ts(w)(E) = p}

= e € Q| 1p)(E) > p—~} = (L7 #)(E) € D.

neN neN
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A.2 Section 4.1

Proof of Theorem[1]. Tt suffices to show that, for each property of beliefs, the repre-
sentations between a type mapping and p-belief operators are equivalent.

1. No-Contradiction. Since t(-)(0) = 0, it follows that Bf (@) = @ for all p € (0, 1].
Conversely, if t5(w)(@)) > 0 for some w € Q, then tg(w)(d) > p for some p > 0, i.e.,
w € BP(0) =0, a contradiction.

2. Normalization. If t(-)(Q) = 1, then B}(Q) = Q. Conversely, for all w € Q, it
follows from w € Q = B'() that tB( )(Q) = 1.

3. Monotonicity. Suppose E C F. If w € Bf(FE) then p < t(w)(F) < t(w)(F) and
thus w € BY(F). Conversely, w € B'5 w)(E)(E) C B'W@E)(F) implies tp(w)(E) <
tp(w)(F).

4. Sub-additivity. Suppose that w € LY(E)N LI(EN F), ie., t(w)(E) < p and
t(w)(E°NF) < gq. Since t(w) is sub-additive,

Hw)(EUF) <t(w)(E)+tw)(ENF)<p+q,
ie.,w e LPT(EUF). Conversely, since
w e L?(w)(E)(E) N L?(W)(ECWF)(EC NF)C LtéB(w)(E)-HB(w)(ECﬂF)(E UF),

it follows that tp(w)(EUF) <tp(w)(F)+tp(w)(E°NF).

5. Super-additivity. The proof for Super-additivity is similar to that for Sub-additivity:
roughly, replace L] and < with B and >, respectively.

6. Finite-additivity. The statement follows from the characterizations for Sub-
additivity and Super-additivity.

7. n-Monotonicity and co-Monotonicity. Take n € N with n > 2. If

we [ My (ﬂ Ej> :

JEPy jeJ

then (i) t(w) (ijJEj) > pyif |J] is odd; and (i) t(w) (anJ Ej) < pyif |J] is even.
Since t(w) satisfies n-Monotonicity,

(U) > (08) = 0
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—_1)lJI-1
Hence, w € Btz" A (U?Zl E’j). Conversely, since

we m MtB Njes E (m E> C BZJePn(_1)“”7%3(“)(0%&7Ej) (U E]> )

JEPn JjeJ j=1

it follows that each tp(w) satisfies n-Monotonicity:
o (UE]) S 3 () (ﬂE)
j=1 JEPn jeJ

8. Alternating n-Monotonicity and Alternating oo-Monotonicity. The proof of this
part is omitted as it is similar to the proof of n-Monotonicity: roughly, replace M %,
Njes Eis Ujes Eny BY, >, and <, vespectively, with N5, U;c; Ej, N;es By Li, <
and >.

9. Magzitivity and Finite Mazitivity. 1only characterize Maxitivity. Ifw € (.., L{” (E;)

then
(U E) < sup t(w)(Ej) < sup p;.

jed jeJ JjeJ

jeJ

Thus, w € L; 7" <U e Ej>. Conversely, if

s e (5.

jeJ jedJ

then

w) (U Ej> <suptp(w)(E;).

jeJ =

10. Minitivity and Finite Minitivity. The proof of this part is similar to that of Max-
itivity and Finite Maxitivity: roughly, replace sup, ) 5, Ly, and <, respectively,
with inf, | J._, E;, By, and >.

JEJ
jeJ

11. Countable Sub-additivity. Let F), ((ﬂn_l ES) N E,) for each n € N. Note
that (J,,cn Bn = Upeny Fro- Hw e, Lp”( ), then

t(w)(F,) < p, for each n € N.
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Thus,
t(w) (U E) = t(w) (U F) <Y HW)(FD) <> P,

le,we LtZ”p” (U,, En). Conversely, if

we (YLEWE(F,) C 15t (U Fn) _ St (U Eﬂ) |

then tp(w) (U, En) < >, te(w)(F,), as desired.

12. Countable Super-additivity. The proof for Countable Super-additivity is similar
to that for Countable Sub-additivity: roughly, replace L% and < with BY and >,
respectively.

13. Countable-additivity. The statement follows from the characterizations for Count-
able Sub-additivity and Countable Super-additivity.

14. Continuity from Above. Since each t(w) is continuous from above, t(w) and BY
are monotonic. Suppose that F,, | E. By Monotonicity,

BY(E) C [\ BY(E,).
Let w € N, B (Ey), ie., t(w)(E,) > p for all n € N. Since t(w) is continuous from
above, it follows that t(w)(E) > p, i.e.,

w € BY(E).
Conversely, since tg(w) is monotone, tg(w)(E) < lim, tg(w)(F,). Since
w € BF@E) () C Blimats@)(E)(f).

it follows from Continuity from Above that

BE= Blimn tB("J)(En)<E)’

ie., tp(w)(E) > lim, tg(w)(E,).

15. Continuity from Below. The proof of this part is similar to that of Continuity
from Above: roughly, replace |, B}, and >, respectively, with 1, L}, and <. O
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A.3 Section (4.2
Proof of Lemmal[l. 3. For the “if” part, w € BP(E) implies p < t(w)(E). Then,

p < tw)(E) < tlw)({w e Q| tw)(E) < t@)(E)})

<
<tw)({w e Q| p <t@)(E)}).

Hence,

we B({G €| p<Ha)(E)}) = BB(E).
For the “only if” part, for any (w, E) € Q x D, since
BE= Bt(W)(E)(E) C Bt(w)(E)Bt(W)(E)(E%

it follows that

tw)(E) < t(w)(B(E)) = tw)({® € Q[ Hw)(E) < t@)(E)}).

4. For the “if” part, let € € (0,1 — t(w)(E)], and let p := t(w)(F) + ¢ < 1. Since
w e (-B")(E) € B*(-B")(E),
it follows that

Hw)(E) + & < Hw)({@ € Q| H@)(E) < Hw)(E) + ).
=p =p

For the “only if” part, suppose that w € (=BP)(E), i.e., t(w)(EF) < p. Letting
e:=p—t(w)(F) yields

p=tw)(E)+e<tw)({we Q@) (E) <p}),

ie., we BP(~BP)(E).

Proof of Proposition[]]. 1. For the “if” part, w € BPBP(E) implies
tw)({w € Q[ Hw)(E) = p}) = Hw)(B"(E)) = p.
Thus, t(w)(E) > p, i.e., w € BP(E). For the “only if” part, assume
tw)({o e Q[ Hw)(E) = p}) = p.

Then, w € BPBP(E) C BP(E), i.e., t(w)(E) > p.
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2. The statement holds when p = 0 as B%(-) = Q by Non-negativity. Thus, assume
p > 0. Suppose to the contrary that w € BPBP(FE)N(—BP)(E). Then, it follows
from Negative Certainty that

Hw)(BP(E)) > p and t(w)(~B?(E)) = 1.
By No-Contradiction, Normalization, and 2-Monotonicity (i.e., Convexity),

1= Hw)(Q) + tw)(0) > Hw)(BY(E)) + t(w)(~B(E)) > p+ 1,
—— N — N

J/

-~
=1

—
=1 =0 >p

a contradiction.

A.4 Section 5.3

Proof of Remark[3. Suppose that a conditional set function u satisfies Normality and
Finite Additivity. I show that the Chain Rule in the form of Expression (18 implies
that in the form of Expression (17)). Take any (C, D, E) € CxCxD with E C D C C.
First, by assumption, Expression holds:

w(E|C) = u(E|D)u(D|C). (A1)
Second, since E°N D C D C C, it also follows that
u(E°N DIC) = p(E° N DID)u(D|C). (A.2)

Then, I obtain:
p(D|C) = u(E|C) + u(E°N D|C)

> WE[D)u(D[C) + n(E N D|D)u(D|C)

= (W(E|D) + p(E° N D|D))u(D|C)

— W(DID)(DIC) = u(DIC). (A3)
The first and third equalities follow from Finite Additivity. The weak inequality
follows from Expressions and . The last equality follows from Normality.
Then, Expression implies that Expressions and have to hold with
equality. Thus, Expression holds, as desired. O

Proof of Remark[4 (9). (a) Under Normality, substituting D = C into Expression
yields Expression (22)). Thus, it is enough to show that Expressions and
(22)) imply Expression . For any (C,D,E) € C x D x D with DNC € C,

wWEND|C)=pu(ENnD)NC|C)
=uwENDNC|DNC)u(DNC|C)
= uwE [ DNC)uD | C),
which establishes Expression (21)). The first and third equalities follow from
Relativization, and the second from Expression (17)).
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(b) First, suppose that ¢ satisfies Relativization. If w € BP(E|C'), then
tw)(ENCIC) = tw)(E|C) = p,
le,we BP(ENCI|C). Ifwe BP(ENC|C), then
tw)(E|C) = tw)(ENC|C) = p,

ie,w e BP(E|C).
Conversely, for any w €  and (E,C) € D x C,

t(w)(E|C) = max{p € [0,1] | w € BP(E|C)}
=max{p € [0,1] |w € B*(ENC|C)} = t(w)(ENC|C).

]

Proof of Remark|[6. Assume Expression . Let (C,D,E) € C xC x D with E C
D C C. Then,

u(E|C) = p(E N DIC)
= min(u(E[D N C), u(D]C))
= min(u(E|D), u(D|C)),

which establishes Expression (24]). The first equality follows because £ C D. The
second equality follows from Expression (23)). The third equality follows because
D CC.

Conversely, assume Expression . Take (C, D, E) € CxDxD with DNC € C.
Then,

p(ENDI|C) = p((END)NCIC)
=u(DNCNE|C)
=min(u(DNCNE|DNC),u(DNC|C))
= min(p(E|D N C), u(D|C)),

which establishes Expression (23]). The first and fourth equalities follow from Rela-
tivization. The second equality follows because (END)NC = DNC N E. The third
equality follows from Expression , where observe that DNCNECDNC. [
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