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Abstract

This paper provides a framework—an expectation space—that allows for di-
rectly analyzing players’ higher-order expectations as the primary object. In
the expectation space, players interactively reason about their expectations of
a random variable: they hold first-order expectations of the random variable,
their second-order expectations about their first-order expectations of the ran-
dom variable, and so forth. This paper imposes weak assumptions on expecta-
tions: (i) the law of iterated expectations (i.e., one’s expectation about her own
expectation coincides with her expectation) and (ii) continuity (for a sequence
of random variables, the limit of expectations coincides with the expectation of
the limit). The main result is to construct a universal expectation space: for
any given expectation space, there exists a unique structure-preserving map into
the universal expectation space. The universal expectation space consists of all
possible expectation hierarchies.
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1 Introduction

In many economic and game-theoretic settings, a player’s expectation about another
player’s expectation can significantly influence behavior. Traditionally, such higher-
order expectations are modeled indirectly through underlying beliefs. However, in
strategic environments where expectations over others’ expectations are central, com-
puting these hierarchies can be analytically intractable—except in special cases where
players’ expectations exhibit linear structure. Although closely related to beliefs, expec-
tations reflect a distinct modeling perspective and warrant being treated as primitive
objects in their own right.

This paper formulates the notion of an expectation space, in which players’ expec-
tation operators are a primitive, and constructs the universal expectation space that
contains all possible forms of expectation hierarchies (Theorem 1 in Section 4).

Technical Challenge. To see the technical challenge behind deriving players’ ex-
pectations from beliefs, let Ω be a set of states of the world. When a given state
of the world ω realizes, each player is assumed to have a (conditional) belief mi(ω)
over the set Ω of states of the world, i.e., mi(ω) is a probability measure over Ω. Her
(conditional) belief mi(ω) at ω may depend on the state realization ω because she may
receive additional information at the state ω. At any given state ω, for any (integrable)
random variable f on the set Ω of states of the world, her (conditional) expectation at
the state ω is derived from her underlying belief mi(ω) over Ω:

Ei(ω)[f ] :=

∫
Ω

f(ω̃)mi(ω)(dω̃).

While the computation of Ei(ω)[f ] itself may be a challenge, the additional and sub-
stantial difficulty is that, in a situation in which players reason about their expectations,
the computation of a higher-order expectation is more challenging. Even player i’s ex-
pectation about her own expectation about f at ω, which I denote by (EiEi)(ω)[f ],
involves multiple integrals:

(EiEi)(ω)[f ] :=

∫
Ω

(∫
Ω

f(ω̃)mi(ω
′)(dω̃)

)
mi(ω)(dω′).

Expectation Spaces. This paper, therefore, formulates the notion of an expectation
space, where players’ (conditional) expectation operators are a primitive. Fix a set I of
players who reason about random variables defined over a set S of states of nature. For
instance, random variables over the parameter space S can be players’ payoff functions,
their action profiles, and/or a price function.

The expectation space consists of three primitives. The first primitive is a set Ω
of states of the world. The space Ω encodes the given parameter space S, the players’
expectations over (random variables on) S, their expectations over their expectations
over S, and so forth. Also, the space Ω is endowed with a measurable structure.
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The second primitive is a measurable function Θ that associates, with each state
ω of the world, the corresponding state of nature s = Θ(ω). Through the function Θ,
the space Ω represents the underlying set S of states of nature.

The third primitive is a profile of the players’ expectation operators (Ei)i∈I . Each
player’s expectation operator Ei is a function that associates, with each state ω of the
world, her conditional expectation Ei(ω)[·] over the set of random variables on Ω held
at that state: that is, for any (integrable) random variable f on Ω, Ei(ω)[f ] is player
i’s expectation of f at ω.

How do the analysts represent players’ higher-order expectations over random vari-
ables on S? Letting g be a random variable on S, one can identify g as a random
variable g ◦ Θ on Ω. Then, player i’s expectation of g at a state ω is represented by
Ei(ω)[g ◦Θ].

Next, one can identify Ei[g ◦ Θ] := Ei(·)[g ◦ Θ] as a function, which associates,
with each ω, her expectation Ei(ω)[g ◦Θ]. This structure allows one to iterate players’
expectation operators. Since player j holds the expectation Ej(ω) [Ei[g ◦Θ]] at each ω,
one can express (EjEi)(ω)[g ◦Θ], j’s expectation over i’s expectation over the random
variable g on S, by

(EjEi)(ω)[g ◦Θ] = Ej(ω)[Ei[g ◦Θ]].

In the traditional type space approach, each player is supposed to be certain of
her own beliefs. Here, I assume that each player is supposed to be certain of her own
expectations. Thus, each player i’s expectation operator is assumed to satisfy the law
of iterated expectations :

EiEi = Ei.

Nature of Expectations. Since players’ expectation operators (Ei)i∈I have not been
studied as a primitive in the previous literature to analyze interactive expectations such
as i’s expectation over j’s expectation over a random variable f , this paper provides
a general framework with which to study interactive expectations. Instead of com-
mitting to expectations that are derived from countably-additive beliefs, I study a
general notion of expectations the special case of which is the one that is derived from
countably-additive beliefs. This is also an advantage of formulating players’ expecta-
tion operators (Ei)i∈I directly as a primitive.

Formally, this paper assumes the following three properties for expectations. The
first is monotonicity. If two random variables satisfy f ≥ g, then one’s expectation
of f is always as high as that of g. The second is constancy: one’s expectation of
a constant function c is always c. In the context of beliefs, this corresponds to the
property that one’s belief in the entire space (or a tautology) is always (probability) 1.
The third is continuity (from below and above): if (fn)n∈N is a non-decreasing (resp.,
non-increasing) sequence of random variables with fn ↑ f (resp., fn ↓ f), then player
i’s expectations always satisfy Ei[fn] ↑ Ei[f ] (resp., Ei[fn] ↓ Ei[f ]).

Under these three assumptions, I construct a universal expectation space—an ex-
pectation space into which any other expectation space embeds (the universal expecta-
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tion space, if it exists, exists uniquely up to isomorphism, and thus one can speak about
the universal expectation space). The universal space consists of infinite hierarchies of
expectations of the form, the players’ expectations over (random variables on) S, their
expectations over their expectations over S, their expectations over their expectations
over their expectations over S, and so on ad infinitum.

Since this requires the notion of expectations over S, that of the expectations over
the expectations over S, and so forth, I introduce the set of expectations over random
variables on a set X, where an expectation is a mapping, which associates, with each
random variable f on X, a corresponding real number (the expectation of f). Denote
it by F (X). In the special case in which one considers only indicator functions (instead
of all possible random variables) on X and expectations are also assumed to be linear,
the operation F is (measurably) isomorphic to that of ∆, where ∆(X) is the set of
probability measures over X.1 Indeed, the framework of this paper generalizes various
notions of beliefs (i.e., countably-additive, finitely-additive, and non-additive beliefs)
as a special case.

Expectation Hierarchies. With these in mind, I discuss the formalization of ex-
pectation hierarchies. For each player i, the set H1

i of her first-order expectations is
the set of expectations over S: H1

i := F (H0) with H0 := S. The set of second-order
expectations of player i consists of expectations over the set S and the first-order expec-
tations of the players: F (H1) with H1 := S ×

∏
j∈I H

1
j . Denote by H2

i := H1
i ×F (H1)

the set of player i’s expectation hierarchies of order up to 2. Denoting by Hk
j the set

of player j’s expectation hierarchies of order up to k, the set Hk+1
i of player i’s expec-

tation hierarchies of order up to k+ 1 is the set Hk
i ×F (Hk) with Hk := S×

∏
j∈I H

k
j .

The set F (Hk) = F (S ×
∏

j∈I H
k
j ) of the (k + 1)-th order expectations is the set of

expectations over the exogenously given parameters S and the players’ expectation
hierarchies order up to k. The paper shows that there exists a subset of expectation
hierarchies H = S ×

∏
i∈I Hi with Hi =

∏
k∈N∪{0} F (Hk) which contains any possible

expectation hierarchies.2

Universal Expectation Space. I discuss the universal expectation space that con-
tains any possible expectation hierarchies. More formally, this paper constructs an

expectation space
−→
Ω∗ such that, for any given expectation space, there exists a unique

1Technically, F is a functor in the language of category theory.
2For the reader who is familiar with the previous literature on the universal belief/type space, in

the definitions of H2
i and more generally Hk+1

i , the previous literature on beliefs usually assumes that
player i is certain of her own beliefs in the sense that each Hk+1

i is given by the set Hk
i × ∆(S ×∏

j∈I\{i}H
k
j ), where ∆(S×

∏
j∈I\{i}H

k
j ) is the set of beliefs over the parameters S and the opponents’

belief hierarchies of order up to k. Since this paper introduces an introspection condition through
the law of iterated expectations, which imposes a condition on the entire set H, I included, in the
description of player i’s expectation hierarchies of order up to k + 1, her own expectation hierarchies
of order up to k.
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structure-preserving map from the given space to the space
−→
Ω∗.3

In the universal expectation space, each state corresponds to a particular expecta-
tion hierarchy. Thus, the unique structure-preserving map has the following property:

for any given state ω of any given expectation space
−→
Ω , denoting by h the unique

structure-preserving map from
−→
Ω to

−→
Ω∗, h(ω) corresponds to the expectation hierar-

chy associated with ω. Thus, the universal expectation space
−→
Ω∗ contains all possible

expectation hierarchies h(ω) attained by some state ω of some expectation space
−→
Ω .4

Moreover, the universal expectation space
−→
Ω∗ to be constructed has the following

three additional properties. First, the expectation space
−→
Ω∗ is non-redundant (Mertens

and Zamir, 1985): two different states in
−→
Ω∗ correspond to two different expectation

hierarchies. Second, the expectation space
−→
Ω∗ is complete (e.g., Brandenburger, 2003;

Brandenburger and Keisler, 2006) in the following sense: for any expectation structure
on the space Ω∗ (i.e., suppose that there exists an expectation space on the state space
Ω∗), the set of expectation hierarchies induced by the new expectation space is sub-

sumed in the original universal expectation space. Third, the expectation space
−→
Ω∗ is

minimal (Di Tillio, 2008; Friedenberg and Meier, 2011): the informational content of

the space
−→
Ω∗ can be expressed by players’ expectation hierarchies alone.5

The rest of the paper is organized as follows. The rest of the Introduction discusses
related literature. Section 2 introduces a notion of expectations studied in this paper.
Section 3 defines expectation spaces and the universal expectation space. Section 4
constructs the universal expectation space in terms of expectation hierarchies. Section
5 provides discussions on the main result followed by concluding remarks. Proofs are
relegated to Appendix A.

Related Literature

First, I discuss the literature that studies interactive expectations. Second, I discuss
the methodological contributions within the literature on universal spaces.

Interactive Expectations. Higher-order expectations have been studied in various
strands of literature in economics and game theory. First, papers such as Golub and
Morris (2017), Hellman (2011), and Samet (1998, 2000) study iterated expectations
in various contexts including the characterization of the existence of a common prior.
The framework of this paper allows for capturing iterated expectations as a primary
object of study.

3In the language of category theory,
−→
Ω∗ is a terminal object in the category of expectation spaces.

In the category theory, it is well-known that the terminal object exists uniquely up to isomorphism.
4For the reader who is familiar with the literature on the universal belief/type space, this con-

struction relies on the one pioneered by Heifetz and Samet (1998), who constructed the universal type
space as the set of belief hierarchies attained by some type profile of some type space.

5For those properties, more precisely, see Sections 4 and 5.
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Second, Jagau and Perea (2018, 2022) introduce interactive expectations into psy-
chological game theory (Battigalli and Dufwenberg, 2009; Geanakoplos, Pearce, and
Stacchetti, 1989). This paper contributes to providing the framework of an expectation
space instead of deriving players’ higher-order expectations from a type space (where
the primitives are players’ beliefs).

Third, while this paper focuses on the foundations of modeling higher-order ex-
pectations, reasoning about expectations plays a role at a broader level in economics,
because, for instance, (future) inflation expectations may influence the current infla-
tion rate. When firms may posses private information, firms’ expectations about their
expectations (about their current and future pricing behaviors and consequently future
inflation rates) may affect the current inflation rate: see, for instance, Phelps (1970,
1983) for the pioneering idea. In the imperfect-common-knowledge New-Keynesian
Phillips curve (e.g., Nimark, 2008), indeed, the current inflation depends on an entire
hierarchy of firms’ expectations about the next-period inflation rate.

Methodological Contributions. This paper belongs to the literature that studies
the existence of a universal structure. For beliefs, i.e., Harsanyi (1967-1968) type
spaces, pioneering works include, among others, Armbruster and Böge (1979), Böge
and Eisele (1979), Brandenburger and Dekel (1993), Heifetz (1993), and Mertens and
Zamir (1985). I discuss the methodological contributions of this paper in the literature
on universal structures.

In constructing the universal expectation space, this paper utilizes the notion of a
functor from category theory (recall footnote 1). The use of a functor establishes the
existence of the universal expectation space regardless of some particular properties
of expectations. More specifically, this paper establishes the existence of the univer-
sal expectation space when players’ expectations are derived from countably-additive,
finitely-additive, or non-additive beliefs. This paper also constructs the universal ex-
pectation space that consists of all finite levels of interactive expectations by imposing
(and identifying) the continuity condition on the functor that represents expectations.

Thus, first, this paper is related to the literature on universal structures that uti-
lizes category theory. The pioneering papers are Moss and Viglizzo (2004, 2006) and
Viglizzo (2005).6 More recently, papers such as Guarino (2025) and Pivato (2024a,b)
apply category theory to constructing a universal structure in various contexts (i.e.,
conditional beliefs and preferences). While the main focus of this paper is on expecta-
tions, Section 5.5 discusses possible applications to various other modes of reasoning.

Second, this paper identifies a “continuity” property on a functor under which the
universal expectation space consists of all finite levels of interactive expectations (see
Lemma 2 in Section 3.4). In the literature, some authors call a canonical space to be

6The formulation of expectations in this paper is different from the “co-algebra” approach by Moss
and Viglizzo (2004, 2006) and Viglizzo (2005) to the extent that the introspection property in the
co-algebraic approach (i.e., each type of each is certain of her own type) is different from the one
considered in this paper (i.e., the law of iterated expectations). Section 5.1 discusses further the
co-algebra approach by Moss and Viglizzo (2004, 2006) and Viglizzo (2005).
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a universal space if, in the canonical space, all finite-level reasoning (e.g., beliefs or
expectations) extend to all subsequent countable-level reasoning (e.g., Brandenburger,
2003; Friedenberg, 2010). The canonical space constructed in this paper also satisfies
this definition of universality. In the previous literature, such paper as Heifetz and
Samet (1998) and Ganguli, Hiefetz, and Lee (2016) construct a canonical space with
this universality property without the aid of any topological structure on an underlying
space about which players interactively reason. This paper constructs the canonical
space following their methodology. In this regard, one contribution of this paper is to
formalize conditions on underlying properties of reasoning, i.e., at the level of a functor,
under which a canonical space is universal—the question posed by Brandenburger
(2003). This paper formulates properties on a functor under which reasoning about all
finite-level reasoning is extended to subsequent countable levels.

2 Formulation of Expectations

The aim of this section is to formulate a notion of expectations through a functor in
category theory: the functor F associates, with each measurable space X, another
measurable space F (X) that represents the set of expectations over X. To that end,
this section starts with technical preliminaries on measurable spaces and a functor.
Section 2.1 provides definitions on measurable spaces and functions. Since the pa-
per formulates expectation hierarchies, the subsection also provides formal definitions
on product measurable spaces. Section 2.2 defines the category-theoretic notion of a
functor. Section 2.3 defines the notion of expectations through a functor.

2.1 Measurable Spaces and Functions

This subsection provides technical preliminaries on measurable spaces, measurable
functions, and product measurable spaces.7

Measurable Spaces. Let X be a set. A sub-collection X of the power set P(X),
i.e., X ⊆ P(X), is an algebra if the following three conditions are met.

1. The collection X contains the entire set X and the empty set ∅.

2. The collection X contains the complement Ec whenever it contains E.

3. The collection X contains the union E ∪F and the intersection E ∩F whenever
it contains E and F .

The collection X is a σ-algebra or a tuple (X,X ) is a measurable space if the collection
X , in addition, satisfies the following property (instead of Condition (3)).

7The materials in this subsection can be found, for instance, in Ash and Doléans-Dade (2000).
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4. The collection X contains the countable union
⋃
n∈NEn and the countable inter-

section
⋂
n∈NEn whenever it contains En for all n ∈ N.

If (X,X ) is a measurable space, then each E ∈ X is referred to as a measurable set.
For any sub-collection of the power set P(X) of a set X, denote by σ(·) the operation
of generating the (smallest) σ-algebra (on X) that includes the given collection. For a
non-decreasing sequence (Xn)n∈N of σ-algebras on X (i.e., m ≤ n implies Xm ⊆ Xn),
the collection

⋃
n∈NXn of subsets of X forms an algebra, not necessarily a σ-algebra.

If (X,X ) is a measurable space and if Y is any subset of X, then (Y,X ∩ Y ) is a
measurable space, where

X ∩ Y := {E ∩ Y ∈ P(Y ) | E ∈ X}.

For any subset A of R, denote by BA the Borel σ-algebra on A.

Measurable Functions. For any functions ϕ, ψ : X → R, the notation ϕ ≥ ψ
means that ϕ(x) ≥ ψ(x) for all x ∈ X. A sequence (ϕn)n∈N of functions on X is
non-decreasing with limit ϕ, denoted by ϕn ↑ ϕ, if (i) ϕm ≤ ϕn for all m,n ∈ N with
m ≤ n and if (ii) for each x ∈ X, ϕ(x) = lim

n→∞
ϕn(x). Similarly, the sequence (ϕn)n∈N

of functions on X is non-increasing with limit ϕ, denoted by ϕn ↓ ϕ, if (i) ϕn ≤ ϕm
for all m,n ∈ N with m ≤ n and if (ii) for each x ∈ X, ϕ(x) = lim

n→∞
ϕn(x). Also, a

sequence (ϕn)n∈N of functions on X converges (pointwise) to a function ϕ, denoted by
ϕn → ϕ or by ϕ = lim

n→∞
ϕn, if, for any x ∈ X, ϕ(x) = lim

n→∞
ϕn(x).

A map ϕ : (X,X ) → (X ′,X ′) between measurable spaces is measurable (or ϕ :
X → X ′ is (X ,X ′)-measurable) if

ϕ−1(X ′) ⊆ X , i.e., ϕ−1(E ′) ∈ X for all E ′ ∈ X ′.

Sometimes, slightly abusing the terminology, I say that the map ϕ : (X,A)→ (X ′,X ′)
is measurable as long as the above condition is satisfied, even if A may not be a σ-
algebra but an arbitrary collection of sets such as an algebra (in that case, the fact
that A may not be a σ-algebra will be indicated).

A measurable function ϕ : (X,X ) → (R,BR) is referred to as a Borel measurable
function or a random variable. For ease of exposition, when I take the expectation of
a Borel measurable function, I focus on that of a bounded Borel measurable function.
A Borel measurable function ϕ is bounded if

‖ϕ‖ := sup
ω∈Ω
|ϕ(ω)| <∞.

For any given measurable space (X,X ), denote by B(X,X ) (or B(X) when it is clear
from the context) the set of bounded Borel measurable functions f : (X,X )→ (R,BR).

Letting (X,X ) be a measurable space, denote the indicator of E ∈ X by IE :
(X,X )→ ({0, 1},P({0, 1})):

IE(x) = 1 if and only if x ∈ E.
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(X,X )
∏

j∈J(Yj,Yj)

(Yk,Yk)

ϕk

ϕ = (ϕj)j∈J

πk

Figure 1: The Definition of ϕ = (ϕj)j∈J

Product Measurable Spaces. Slightly abusing the notation, any product of mea-
surable spaces (Xj,Xj)j∈J (a shorthand for ((Xj,Xj))j∈J), where J is a non-empty
index set, is taken as the product measurable space:

∏
j∈J

(Xj,Xj) :=

(∏
j∈J

Xj,
∏
j∈J

Xj

)
.

That is,
∏

j∈J Xj is the Cartesian product, and
∏

j∈J Xj is the product σ-algebra.

Denoting by πXXj or simply πj the projection from
∏

j∈J Xj to Xj, the product σ-
algebra

∏
j∈J Xj is defined as the smallest σ-algebra that makes every projection πj

measurable, i.e., ∏
j∈J

Xj := σ

(⋃
j∈J

π−1
j (Xj)

)
.

As usual, if (X,X ) = (Xj,Xj) for all j ∈ J , then denote (XJ ,X J) :=
∏

j∈J(Xj,Xj).
When J = {1, . . . , n}, denote

∏n
j=1(Xj,Xj) :=

∏
j∈J(Xj,Xj). In particular, denote

(X1 ×X2,D1 ×D2) :=
∏2

j=1(Xj,Dj).
Let (X,X ) be a measurable space, and let (Yj,Yj)j∈J be a collection of measurable

spaces. For a profile of measurable maps ϕj : (X,X ) → (Yj,Yj), define ϕ = (ϕj)j∈J :
(X,X )→

∏
j∈J(Yj,Yj) as a measurable map satisfying

ϕk = πk ◦ ϕ for all k ∈ J,

where πk is the projection. Thus, ϕ(x) = (ϕj(x))j∈J for all x ∈ X. Figure 1 illustrates
the definition.

2.2 A Functor

This paper formalizes the notion of expectations using the category-theoretic notion
of a functor. When a player holds beliefs over a set X, the set of beliefs over X is
represented by the set ∆(X) of probability measures over X. Category theoretically,
this operation ∆ is a functor. With this in mind, I represent the set of a player’s
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X X ′

F (X) F (X ′)

F

ϕ

F (ϕ)

F

X X

F (X) F (X)

F

idX

F (idX)

F

X X ′ X ′′

F (X) F (X ′) F (X ′′)
F (ϕ)

F
F (ψ)

F F

ϕ ψ

ψ ◦ ϕ

F (ψ ◦ ϕ)

Figure 2: The Illustration of the properties of a Functor F

expectations over random variables on a set X using the set F (X) where F is a functor
(that represents expectations).

Before defining the functor that represents expectations, since the category-theoretic
notion of a functor may not be a standard (or well-known) toolkit for economists or
game theorists, I define a functor F . Namely:

Definition 1 (Functor). The functor F (on the class of measurable spaces) is an
operation that satisfies the following four properties.

1. F associates, with each measurable space (X,X ), a measurable space F (X,X ) =:
(F (X),XF ). Namely, F (X) is a set, and XF is a σ-algebra on F (X).

2. F associates, with each measurable map ϕ : (X,X )→ (X ′,X ′) between measur-
able spaces, a measurable map F (ϕ) : F (X,X )→ F (X ′,X ′).

3. For the identify map id(X,X ) : (X,X )→ (X,X ) (or idX when X is clear from the
context) on a measurable space (X,X ), F satisfies F (id(X,X )) = idF (X,X ).

4. For any measurable maps ϕ : (X,X )→ (X ′,X ′) and ψ : (X ′,X ′)→ (X ′′,X ′′), F
satisfies F (ψ) ◦ F (ϕ) = F (ψ ◦ ϕ).

The left panel of Figure 2 illustrates Condition (2). For a given measurable map
ϕ from X to X ′, F (ϕ) is a measurable map from F (X) to F (X ′). The central panel
of Figure 2 depicts Condition (3). The condition requires the measurable map F (idX)
from F (X) into itself (in the second “row” of the panel) to be equal to the identity
map idF (X). The right panel of Figure 2 illustrates Condition (4). The condition states
that, for the composite ψ ◦ ϕ : X → X ′′ of two measurable functions ϕ : X → X ′ and
ψ : X ′ → X ′′, the measurable map F (ψ ◦ ϕ) : F (X) → F (X ′′) satisfies F (ψ ◦ ϕ) =
F (ψ) ◦ F (ϕ) as indicated in the lower part of the panel.

Remark 1 (Functor ∆). To contrast expectations with beliefs (and to better under-
stand the notion of a functor), consider ∆ (i.e., beliefs). First, for any measurable space
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(X,X ), let ∆(X) be the set of countably-additive probability measures over (X,X ).
Let X∆ be the σ-algebra generated by

{{µ ∈ ∆(X) | µ(E) ≥ p} ∈ P(∆(X)) | (E, p) ∈ X × [0, 1]}.

Second, for any measurable map ϕ : (X,X ) → (X ′,X ′), define a mapping ∆(ϕ) :
(∆(X),X∆) → (∆(X ′),X ′∆) by the image measure ∆(ϕ)(µ) := µ ◦ ϕ−1 for any µ ∈
∆(X): that is, for each E ′ ∈ X ′,

∆(ϕ)(µ)(E ′) := µ(ϕ−1(E ′)).

The mapping ∆(ϕ) is measurable because, for any (E ′, p) ∈ X ′ × [0, 1],

(∆(ϕ))−1({µ′ ∈ ∆(X ′) | µ′(E ′) ≥ p}) = {µ ∈ ∆(X) | µ(ϕ−1(E ′)) ≥ p} ∈ X∆.

Third, by definition, ∆(id(X,X )) = id(∆(X),X∆). Fourth, take any measurable maps
ϕ : (X,X )→ (X ′,X ′) and ψ : (X ′,X ′)→ (X ′′,X ′′). For any µ ∈ ∆(X),

(∆(ψ) ◦∆(ϕ))(µ) = ∆(ψ)(∆(ϕ)(µ)) = ∆(ψ)(µ ◦ ϕ−1)

= (µ ◦ ϕ−1) ◦ ψ−1 = µ ◦ (ϕ−1 ◦ ψ−1)

= µ ◦ (ψ ◦ ϕ)−1 = ∆(ψ ◦ ϕ)(µ),

establishing that ∆(ψ) ◦∆(ϕ) = ∆(ψ ◦ ϕ).

2.3 An Expectation Functor

This subsection defines a functor that represents a notion of expectations.

Definition 2 (Expectation Functor). An operation F is an expectation functor if the
following three conditions are met.

1. For any measurable space (X,X ), the set F (X) is a subset of the space RB(X,X )

of the mappings from B(X,X ) into R such that any J ∈ F (X) satisfies the
following four properties.

(a) Monotonicity: f ≥ g implies J [f ] ≥ J [g].

(b) Constancy: J [c · IΩ] = c for any c ∈ R.

(c) Continuity from Below: fn ↑ f (in B(X,X )) implies J [fn] ↑ J [f ].

(d) Continuity from Above: fn ↓ f (in B(X,X )) implies J [fn] ↓ J [f ].

2. Let XF be the σ-algebra on F (X) generated by

{{J ∈ F (X) | J(f) ≥ r} ∈ P(F (X)) | (f, r) ∈ B(X,X )× R}.

11



3. For any measurable map ϕ : (X,X ) → (X ′,X ′), define F (ϕ) : (F (X),XF ) →
(F (X ′),X ′F ) as follows: for any J ∈ F (X) and f ′ ∈ RB(X′,X ′),

F (ϕ)(J)(f ′) := J(f ′ ◦ ϕ). (1)

In Definition 2, Condition (1) defines the set F (X) of expectation functionals on
(X,X ).8 Henceforth, I call F (X) the space of expectations over X. The condition
requires each expectation functional J ∈ F (X) to satisfy Monotonicity, Constancy,
and the continuity properties (i.e., (1c) and (1d)). Note that, since

J

(
inf
m≥n

fm

)
≤ J(fn) ≤ J

(
sup
m≥n

fm

)
holds under Monotonicity, the continuity properties can be replaced with:

1. (e) Continuity: if f = lim
n→∞

fn (in B(X,X )), then J [f ] = lim
n→∞

J [fn].

Remark 2 below considers the case in which the set F (X) is defined as the set of ex-
pectation functionals on (X,X ) each of which is derived from some countably-additive
probability measure on (X,X ).

Condition (2) defines a measurable structure on F (X), i.e., the σ-algebra XF on
F (X). The condition allows one to discuss whether one’s expectation of a random
variable f is at least as high as a real number r.

Condition (3) defines how the operation F preserves a measurable mapping ϕ :
X → X ′ to F (ϕ) : F (X) → F (X ′). That is, for any expectation functional J on X,
the expectation functional F (ϕ)(J) on X ′ evaluates the random variable f ′ on X ′ as
the expectation functional J evaluates the random variable f ′ ◦ ϕ on X.

The lemma below asserts that an expectation functor F is indeed a functor.

Lemma 1 (Expectation Functor). An expectation functor F is a functor.

While Condition (1) accommodates various notions of (non-linear) expectation
functionals, the following remark identifies the functor that represents the standard
notion of expectations that are derived from countably-additive beliefs.

Remark 2 (Standard Expectations). Define a (particular) expectation functor Γ as
the one that satisfies the following properties in Condition (1) in Definition 2 in addi-
tion to Monotonicity, Constancy, Continuity from Below, and Continuity from Above.
Namely, Γ(X) is a subset of RB(X,X ) such that each J ∈ Γ(X) satisfies the following
three properties in addition to Monotonicity, Constancy, Continuity from Below, and
Continuity from Above:

8That is, if J ∈ F (X), then J associates, with any bounded Borel measurable function f , the
expectation J [f ] of f . It is referred to as a functional because it maps a (bounded Borel measurable)
function f to a real number.
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(e) Sub-additivity: J [f + g] ≤ J [f ] + J [g].

(f) Super-additivity: J [f + g] ≥ J [f ] + J [g].

(g) Homogeneity: J [cf ] = cJ [f ] for all c ∈ R.

Note that, under Additivity (i.e., J [f + g] = J [f ] + J [g]) and Homogeneity, Constancy
and Monotonicity can be replaced by a weaker form of Constancy J [IΩ] = 1 and Non-
negativity: f(·) ≥ 0 implies J [f ] ≥ 0. Note also that, since J [−f ] = −J [f ] under
Homogeneity, Continuity from Below and Continuity from Above are equivalent.

In fact, as countably-additive beliefs and expectations (that are derived from countably-
additive beliefs) are in a one-to-one correspondence, the next remark formally shows
that the functors Γ and ∆ are equivalent.

Remark 3 (Beliefs and Expectations). To see the equivalence between the functors Γ
and ∆, first, for any given µ ∈ ∆(X), define Jµ ∈ Γ(X) as

Jµ[f ] :=

∫
f(x)µ(dx) for any f ∈ B(X).

Second, for any J ∈ Γ(X), define µJ ∈ ∆(X) as

µJ(E) := J [IE] for all E ∈ X .

Then, it can be seen that
µJµ = µ and JµJ = J.9

Another way to identify Γ and ∆ is to restrict attention to the set of indicator
functions I(X,X ) instead of the set of bounded Borel measurable functions B(X,X ).
Then, the functor Γ reduces to ∆. This way, it can be seen that the methodology
of this paper also subsumes the case in which players’ beliefs are finitely-additive or
non-additive.

3 Expectation Spaces

This section defines expectation spaces. An expectation space encodes players’ inter-
active reasoning about their expectations. Section 3.1 defines an expectation space.
Section 3.2 defines the universal expectation space, an expectation type space to which
every expectation space is mapped in a structure-preserving manner. Section 3.3 an-
alyzes economic examples in which players’ strategies depend on their iterated expec-
tations. Finally, Section 3.4 provides a measure-theoretic result on the expectation
spaces which turns out to be useful for constructing the universal expectation space in
Section 4.

9Thus, one can establish the category-theoretic equivalence between functors ∆ and Γ. See also
Fukuda (2024b).
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Let I denote a non-empty set of players. By adding nature (without loss, denote it
by 0) to the set I of players, define I0 := I ∪{0}. Also, let (S,S) a measurable space of
states of nature. The players hold their expectations about (bounded) random variables
f : (S,S) → (R,BR). An element of S is regarded as a specification of the exogenous
values that are relevant to the strategic interactions among the players. For instance,
(S,S) is the set of action profiles and/or payoff functions endowed with a measurable
structure (see Section 3.3 for examples).

3.1 Expectation Spaces

This subsection defines an expectation space, in which the players’ expectation opera-
tors are a primitive. The expectation space allows one to study interactive expectations
over random variables on a given set S of states of nature. Formally:

Definition 3 (Expectation Space). An expectation space (of I on (S,S)) is a tuple
−→
Ω := 〈(Ω,D),Θ, (Ei)i∈I〉 with the following properties.

1. (Ω,D) is a measurable space.

2. Θ : (Ω,D)→ (S,S) is a measurable map.

3. Each Ei : (Ω,D)→ (F (Ω),DF ) is player i’s expectation operator, where F is an
expectation functor: it is a measurable mapping such that the law of iterated
expectations holds:

Ei = EiEi. (2)

In Condition (1), the state space Ω is a sample space on which the set S of states
of nature and the players’ expectations about random variables on S are represented.
In Condition (2), the mapping Θ associates, with each state of the world ω ∈ Ω, the
corresponding state of nature Θ(ω) ∈ S.

In Condition (3), at each state ω ∈ Ω, the functional Ei(ω) : B(Ω,D)→ R is player
i’s expectation functional over random variables on (Ω,D). Thus, for any bounded
measurable function f , Ei(ω)[f ] is player i’s expectation of f at ω. For the law of
iterated expectations, Expression (2) states that, for any ω ∈ Ω and for any bounded
Borel measurable function f on Ω,

Ei(ω)[f ] = Ei(ω)[Ei(·)[f ]]. (3)

The left-hand side of Expression (3) is player i’s expectation of f at ω. For the right-
hand side of Expression (3), Ei(·)[f ] is a function that associates, with each state, player
i’s expectation of f at that state. Thus, the right-hand side is player i’s expectation
of her expectation of f .

One can also analyze players’ interactive expectations. For instance, similarly to
the right-hand side of Expression (3), Ei(ω)[Ej(·)[f ]] is player i’s expectation at ω of
player j’s expectation of f , because Ej(·)[f ] is a (bounded Borel measurable) function
that associates, with each state, player j’s expectation of f at that state.
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Remark 4 (Two Interpretations of Ei). To better understand iterations of expecta-
tions, I discuss two ways to interpret the expectation operator Ei. The first is, as in
Definition 3, to identify Ei with

Ei : (Ω,D) 3 ω 7→ Ei(ω)[·] ∈ (F (Ω),DF ).

That is, player i’s expectation operator Ei associates, with each state ω ∈ Ω, her
expectations of bounded Borel measurable functions on Ω.

The second is to identify Ei with

Ei : B(Ω,D) 3 f 7→ Ei(·)[f ] ∈ B(Ω,D).

That is, player i’s expectation operator associates, with each bounded Borel measurable
function f on Ω, the bounded Borel measurable function Ei(·)[f ] on Ω that indicates
her expectations of f . Put differently, a random variable f is mapped to another
random variable Ei(·)[f ].

I show that, for any bounded Borel measurable function f , the function Ei(·)[f ] is
indeed a bounded Borel measurable function. For measurability, for each r ∈ R,

(Ei)−1({J ∈ F (Ω) | J [f ] ≥ r}) = {ω ∈ Ω | Ei(ω)[f ] ≥ r} ∈ D.

For boundedness, since Ei(ω) satisfies Monotonicity and Constancy (recall Definition
2),

sup
ω∈Ω
|Ei(ω)[f ]| ≤ sup

ω∈Ω
|f(ω)| <∞.

To conclude this subsection, two remarks are in order. First, I introduce the notion
of average expectations.

Remark 5 (Average Expectations). For ease of exposition, let I = (0, 1] be the set of

players.10 Consider the class of expectation spaces
−→
Ω of I on (S,S) such that there

exists a measurable mapping E : (Ω,D)→ (F (Ω),DF ) such that

E(ω)[f ] =

∫
I

Ei(ω)[f ]di for each (ω, f) ∈ Ω×B(Ω).

Then, each player can reason about the average expectations, because E maps f ∈
B(Ω,D) to E[f ] ∈ B(Ω,D).

10Two remarks are in order. First, I consider I = (0, 1] instead of I = [0, 1] only so as to avoid
the clash of notation with nature 0. Second, when I = {1, . . . , n}, one can introduce the average
expectation operator E : (Ω,D)→ (F (Ω),DF ) by

E(ω)[f ] :=
1

n

n∑
i=1

Ei(ω)[f ] for each (ω, f) ∈ Ω×B(Ω,D).

15



Second, I briefly discuss the case in which a player’s expectation operator is derived
from other primitives such as information sets or a σ-algebra.

Remark 6 (Other Primitives that Induce Expectation Operators). I briefly discuss
the case in which each player’s expectation operator is derived from any other primitive
such as a collection of information sets or a σ-algebra. Let (Ω,D) be a measurable space
of states of the world, and let µ be a probability measure µ on (Ω,D) which plays a role
of a common prior. Now, suppose that each player i’s expectation operator is derived
from her conditional expectation operator

Ei[·] := Eµ[· | Ji],

where Eµ is the expectation functional derived from the common prior µ and Ji is a
σ-algebra that represents player i’s information.11

3.2 Universal Expectation Space

This subsection defines the universal expectation space. An expectation space
−→
Ω∗ is

universal if, for any expectation space
−→
Ω , there is a unique structure-preserving map

from
−→
Ω to

−→
Ω∗. Definition 4 defines a structure-preserving map, i.e., an (expectation)

morphism. Then, Definition 5 defines the universal expectation space.

Definition 4 (Morphism). Let
−→
Ω = 〈(Ω,D),Θ, (Ei)i∈I〉 and

−→
Ω′ = 〈(Ω′,D′),Θ′, (E′i)i∈I〉

be expectation spaces (of I on (S,S)). An (expectation) morphism ϕ :
−→
Ω →

−→
Ω′ is a

measurable map ϕ : (Ω,D)→ (Ω′,D′) satisfying the following two conditions:

1. Θ = Θ′ ◦ ϕ.

2. E′i ◦ ϕ = F (ϕ) ◦ Ei for each i ∈ I.

As depicted in the left panel of Figure 3, Condition (1) requires ϕ to preserve states.
As depicted in the right panel of Figure 3, Condition (2) requires ϕ to preserve each
player’s expectations.

For any expectation space
−→
Ω , the identity map idΩ forms a morphism from

−→
Ω

into itself. Denote by id−→
Ω

:
−→
Ω →

−→
Ω the identity (expectation) morphism. Next,

a morphism ϕ :
−→
Ω →

−→
Ω′ is an (expectation) isomorphism, if there is a morphism

ψ :
−→
Ω′ →

−→
Ω with ψ ◦ ϕ = id−→

Ω
and ϕ ◦ ψ = id−→

Ω′
(that is, ϕ is bijective and its inverse

ϕ−1 is a morphism). If ϕ is an isomorphism then its inverse ϕ−1 is unique. Expectation

spaces
−→
Ω and

−→
Ω′ are isomorphic, if there is an isomorphism ϕ :

−→
Ω →

−→
Ω′.

I define the universal expectation space. It “includes” all expectation spaces in that
any expectation space can be mapped to the universal space under a unique morphism.

11Fukuda (2024a) considers a belief model in which each player’s posterior beliefs are induced
from conditional probabilities (i.e., a prior conditional on the player’s information sets) and studies
conditions on a prior and information sets under which her posterior beliefs are Bayes conditional
probabilities (and consequently the law of iterated expectations hold).

16



Ω S

Ω′

ϕ

Θ

Θ′

Ω Ω′

F (Ω) F (Ω′)

Ei

ϕ

F (ϕ)

E′i

Figure 3: Illustration of Definition 4

Definition 5. Consider the class of expectation spaces of I on (S,S). An expectation

space
−→
Ω∗ (in the class) is universal if, for any expectation space

−→
Ω (in the class), there

is a unique morphism ϕ :
−→
Ω →

−→
Ω∗.

The terminology follows from the usage of Heifetz and Samet (1998) and more
recently that of Meier and Perea (2025). Since the non-empty set of players I, the ex-
pectation functor F , and the measurable space (S,S) of states of nature are all fixed,
the class of expectation spaces of I on (S,S) forms a category, where an expectation

space
−→
Ω is an object and an expectation morphism is a morphism. In fact, any com-

posite of two morphisms is a morphism; composites of morphisms are associative; and
an identity morphism satisfies the identity law. In the language of category theory,
the universal expectation space in the class is a terminal (final) object in the given
category of expectation spaces. The universal expectation space (in the category of
expectation spaces) is unique up to type isomorphism (and thus one can speak about
the universal space).

3.3 Economic Examples

To sum up the previous discussions on the framework of the paper, this subsection
provides two examples of expectation spaces in applied contexts, in which players’
equilibrium strategies depend on their iterated expectations.

3.3.1 Cournot Competition from Weinstein and Yildiz (2007)

I consider the Cournot duopoly model from Weinstein and Yildiz (2007), where each
firm has its linear best-response function. Denote by P the price of a good, and denote
by Q = q1 +q2 the total quantity supplied by the duopoly firms, where qi ∈ Si := [0,∞)
is the supply by firm i ∈ I := {1, 2}. Suppose that the inverse demand function, which
I also denote by P , is given by

P (Q) := s0 −Q,

where s0 ∈ S0 is an unknown demand parameter. Assume that S0 is a bounded subset
of (0,∞) endowed with the Borel σ-algebra S0 := BS0 . For ease of analysis, assume
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that the production costs are zero. Letting S := S0×S1×S2 be the profile of a demand
parameter and the firms’ actions, firm i’s payoff function ui : S → R is written by

ui(s0, q1, q2) := qi(s0 − q1 − q2).12

A model of the (Cournot duopoly) game 〈(Si)i∈I , (ui)i∈I〉 is an expectation space
−→
Ω = 〈(Ω,D),Θ, (Ei)i∈I〉. First, (Ω,D) is a measurable space of states of the world.
Second, Θ = (Θi)i∈I0 is a profile of measurable functions with the following proper-
ties: (i) Θ0 : (Ω,D) → (S0,S0) associates, with each state of the world ω ∈ Ω, the
corresponding demand parameter Θ0(ω) ∈ S0; and (ii) for each player i ∈ I, the map-
ping Θi : (Ω,D) → (Si,Si), where Si := B[0,∞) is the Borel σ-algebra on Si = [0,∞),
associates, with each state of the world ω ∈ Ω, the action taken by firm i at that
state: Θi(ω) ∈ Si (i.e., Θi is firm i’s strategy).13 Third, each Ei is player i’s expec-
tation operator. For ease of analysis, assume that each Ei(ω)[·] is linear (i.e., satisfies
Sub-additivity, Super-additivity, and Homogeneity as in Remark 2).

In the expectation space, player i’s expected payoff at ω ∈ Ω is given by

Ei(ω)[ui ◦Θ],

where, for any ω̃ ∈ Ω,

(ui ◦Θ)(ω̃) = ui(Θ0(ω̃),Θ1(ω̃),Θ2(ω̃)).

To see the role of higher-order expectations, here I consider a particular Θ such
that each firm best-responds to the other (i.e., (Θ1,Θ2) constitutes a Bayes Nash
equilibrium). Thus, for each i ∈ I = {1, 2} and the opponent firm j = 3 − i, Θi

maximizes, at each ω ∈ Ω, the firm’s expected profit at that state given Θ−i:

Θi(ω) ∈ argmax
qi

Ei(ω)[qi(Θ0(ω̃)− qi −Θj(ω̃))].

Thus, Θi satisfies

Θi(·) =
Ei(·)[Θ0]− Ei(·)[Θj]

2
.

Substituting the corresponding equation for firm j into the above one yields:

Θi =
Ei[Θ0]

2
− EiEj[Θ0]

22
+

EiEj[Θi]

22
.

By repeated substitutions and by slightly abusing the notation, Θi can be written as
a convergent sum of higher-order expectations about s0 = Θ0(ω):

Θi =
Ei[s0]

2
− EiEj[s0]

22
+

EiEjEi[s0]

23
− EiEjEiEj[s0]

24
+ · · · · · · .

12Two remarks are in order. First, although the payoff function ui is not bounded, one can fit
it to the framework of this paper by considering a bounded Borel measurable function max(qi(s0 −
q1 − q2), 0). For ease of exposition, I adopt the simpler notation. Second, this example considers
expectation hierarchies over the entire set S, i.e., the parameter space S0 and the firms’ actions
S1 × S2. This is different from the analyses of Bayesian games in the literature in which players
interactively reason about their payoff uncertainty S0 alone (e.g., Friedenberg and Meier, 2017).

13One can restrict attention to the case in which Ω is always given by the product space Ω = S0×Ω−0

and accordingly Θ0 is the projection from Ω = S0 × Ω−0 into S0.
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3.3.2 Keynesian Beauty Contest from Morris and Shin (2002)

Let I := (0, 1]. Player i ∈ I chooses her action ai ∈ Si := R. Letting s0 ∈ S0 := R be
a realization of an underlying fundamental and letting a = (aj)j∈I ∈ S−0 := RI be the
action profile of the players, player i receives a payoff of

ui(s0, a) := −(1− r)(ai − s0)2 − r(Li − L), (4)

where r ∈ (0, 1) is a constant and Li − L is player i’s loss function given as follows:

Li :=

∫
I

(aj − ai)2dj and L :=

∫
I

Ljdj.

The first term of player i’s utility function is a standard quadratic loss in the distance
between player i’s own action ai and the underlying fundamental s0. Denote by (s0, a) ∈
S := S0 × S−0. The second term of player i’s utility function is the “beauty contest”
term. The loss Li is increasing in the average distance between player i’s action ai
and the actions of the other players. The loss Li is normalized by its average L. Each
player i second-guesses the actions of the other players. A higher r corresponds to a
higher incentive to second guess the actions of the other players.

For each player i, who maximizes the expected payoff where the payoff is given
by Expression (4), it is optimal to take her own estimate of the weighted average of
the fundamental and the average action of the other players. Denoting by Ei the
expectation operator of player i (to be discussed below in more detail), her best-
response is to take

ai = Ei[(1− r)s0 + ra], where a :=

∫
I

ajdj. (5)

Below, I consider two cases. First, in the public information benchmark where the
players have access to public information, suppose that s0 is drawn from an improper
uniform prior over S0 = R but the players observe a public signal

y = s0 + η,

where η is normally distributed, independent of s0, with mean 0 and variance α−1. The
players choose their actions after observing y ∈ Ω := R. Thus, Θ0 : Ω→ S0 associates,
with each y ∈ Ω = R, s0 = y − η ∈ S0 = R. For each player i ∈ I, her expectation
operator associates, with each y ∈ Ω, her conditional expectation conditional on the
observation of y:

Ei(y)[·] := E[· | y].

Moreover, a measurable function Θi associates, with each y ∈ Ω, her action Θi(y) ∈
Si = R. Since Ei(y)[s0] = y and Ei(y)[Θj] = Θj(y), it follows from Expression (5) that,
in the unique equilibrium,

Θi(y) = y for all i ∈ I.
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In sum, 〈(Ω,D),Θ, (Ei)i∈I〉 is an expectation space, where D = BR and Θ = (Θi)i∈I0 .
Second, consider the situation in which, in addition to the public signal, player i

observes the realization of a private signal

xi = s0 + εi,

where noise terms εi of the continuum of population are normally distributed with
mean 0 and variance β−1, independent of s0 and η, so that E[εiεj] = 0 for all i, j ∈ I
with i 6= j. Denoting by x = (xi)i∈I the profile of (the realizations of) private signals,
a state of the world consists of (y, x) ∈ Ω = R[0,1]. The state space Ω is endowed
with the Borel σ-algebra D. For Θ0, it depends only on y and maps y to s0. For each
player i, the measurable map Θi depends only on (y, xi) and maps (y, x) to player i’s
action. Similarly, for each player i, her expectation operator Ei associates, with each
state (y, x) ∈ Ω, the conditional expectation

Ei(y, x)[·] := E[· | y, xi].

Note that

Ei(y, x)[s0] =
αy + βxi
α + β

= (1− µ)y + µxi, where µ =
β

α + β
.

To solve for an equilibrium, denoting by E the average expectation, it follows from
Expression (5) that

ai = (1− r)Ei[s0] + rEi[a]

= (1− r)Ei[s0] + (1− r)rEiE[s0] + r2EiE[a]

= (1− r)Ei[s0] + (1− r)rEiE[s0] + (1− r)r2EiE
2
[s0] + r3EiE

2
[a]

= · · · · · ·

= (1− r)
∞∑
k=0

rkEiE
k
[s0], (6)

provided that the last infinite sum is bounded. Morris and Shin (2002, Lemma 1) show
that, for any k ∈ N,

Ei(y, x)Ek[s0] = (1− µk+1)y + µk+1xi.

Substituting the above expression into Expression (6) and rearranging yields:

Θi(y, x) =
αy + β(1− r)xi
α + β(1− r)

.

In sum, 〈(Ω,D),Θ, (Ei)i∈I〉 is an expectation space, where Θ = (Θi)i∈I0 .
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3.4 A Key Measure-Theoretic Result on an Expectation Func-
tor

To conclude the section on expectation spaces, this subsection provides a technical but
key measure-theoretic result on an expectation functor. The result, which hinges on
the continuity of expectations, turns out to play a key role in establishing the main
result (Theorem 1 in Section 4).

I present the key measure-theoretic result at an abstract level. Throughout this
subsection, let (Ω`,D`)`∈N be a collection of measurable spaces. For each k ∈ N, define
product measurable spaces

(Ωk,Dk) :=
k∏
`=1

(Ω`,D`). (7)

Also, define the product measurable space

(Ω,D) :=
∏
`∈N

(Ω`,D`). (8)

For each k ∈ N, denote by πk : (Ω,D) → (Ωk,Dk) the projection. Note that(
(πk)−1(Dk)

)
k∈N is a non-decreasing sequence of σ-algebra on Ω and

D = σ

(⋃
k∈N

(πk)−1(Dk)

)
.

In Section 4, the space of a player’s expectation hierarchies of order up to k turns
out to be of the form of (Ωk,Dk), and the space of a player’s expectation hierarchies
turns out to be of the form of (Ω,D). However, in this subsection, each (Ω`,D`) is an
arbitrary measurable space.

With these definitions in mind, the first part of the following lemma roughly states
that if two expectation functionals J and J ′ on B(Ω,D) are identical if (and only if)
they are identical on B(Ωk,Dk) for all k ∈ N. In words, an expectation functional
on B(Ω,D) admits a unique extension from (B(Ωk,Dk))k∈N. The second part of the
following lemma roughly states that Ei : Ω→ F (Ω) is (D,DF )-measurable if (and only
if) Ei is (D, (F (πk))−1(DkF ))-measurable for all k ∈ N. As I will illustrate it below, in
words, the second part states that F is continuous in the sense that the order of the
operations σ and F can be exchanged. Formally:

Lemma 2 (The Key Measure-Theoretic Lemma). 1. For any J, J ′ ∈ F (Ω), J = J ′

if (and only if) F (πk)(J) = F (πk)(J ′) for all k ∈ N.

2. A mapping Ei : (Ω,D)→ (F (Ω),DF ) is measurable if (and only if) F (πk) ◦ Ei :
(Ω,D)→ (F (Ωk),DkF ) is measurable for all k ∈ N.
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B(Ω,D) R

B(Ωk,Dk)

J, J ′

F (πk)(J), F (πk)(J ′)

(πk)−1(Dk) DF

(Ω,D) (F (Ω),DF )

F (πk) ◦ Ei

(Ωk,Dk) (F (Ωk),DkF )

Dk DkF

Ei

F (πk)πk

Figure 4: Illustration of Lemma 2: Part (1) (Left) and Part (2) (Right).

The left panel of Figure 4 illustrates Part (1) of Lemma 2. The upper arrow depicts
two expectation functionals J and J ′ on B(Ω,D), and the lower arrow two expectation
functionals F (πk)(J) and F (πk)(J ′) on B(Ωk,Dk) for a given k ∈ N.

The right panel of Figure 4 illustrates Part (2) of Lemma 2. The solid arrow from Ω
into F (Ω) depicts Ei, and the solid arrow from Ω into F (Ωk) depicts F (πk)◦Ei. I discuss
the sense in which the second part states that F is continuous, i.e., the operations of
σ and F can be exchanged. On the one hand, starting from Dk, the solid arrows from
Dk to DF through (πk)−1(Dk) illustrates the fact that Ei isD,

(
σ

(⋃
k∈N

(πk)−1(Dk)

))
F︸ ︷︷ ︸

=DF

 -measurable.

I start with the operation σ of generating the smallest σ-algebra on Ω from an algebra⋃
k∈N(πk)−1(Dk). Then, I apply the operation F to generate the σ-algebra on F (Ω).

On the other hand, starting from Dk, the solid arrows from Dk to DF through DkF
illustrates the fact that Ei is(

D, σ

(⋃
k∈N

(F (πk))−1(DkF )

))
-measurable.

I start with the operation F of generating the σ-algebra DkF on F (Ωk), which defines
an algebra

⋃
k∈N(F (πk))−1(DkF ) on F (Ω). Then, I apply the operation σ to generate

the smallest σ-algebra on F (Ω).

Remark 7 (Lemma 2 when F = ∆). I remark on Lemma 2 when F = ∆.

1. Lemma 2 (1) states that if two probability measures (i.e., beliefs) µ and µ′ on Ω
(i.e., µ, µ′ ∈ ∆(Ω)) satisfy

µ
(
(πk)−1(·)

)
= µ′

(
(πk)−1(·)

)
for all k ∈ N,
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then µ = µ′. That is, if µ = µ′ on an algebra A :=
⋃
k∈N(πk)−1(Dk), then

µ = µ′ on D = σ(A). This is, however, a well-known unique extension result:
a probability measure defined on an algebra admits a unique extension on the
generated σ-algebra.

2. Denoting a belief mapping mi (instead of an expectation operator Ei) that as-
sociates, with each state ω ∈ Ω, player i’s belief over Ω (i.e., mi(ω) ∈ ∆(Ω)),
Lemma 2 (2) states that mi : (Ω,D) → (∆(Ω),D∆) is measurable if (and only
if) ∆(πk) ◦mi : (Ω,D)→ (∆(Ωk),Dk∆) is measurable for all k ∈ N. Assume that
m−1
i

(
(∆(πk))−1(Dk∆)

)
⊆ D for all k ∈ N. Thus,

m−1
i

(
σ

(⋃
k∈N

(∆(πk))−1(Dk∆)

))
⊆ D.

Lemma 2 (2) then allows one to exchange the order of operating σ and ∆:

m−1
i


(
σ

(⋃
k∈N

(πk)−1(Dk)

))
∆︸ ︷︷ ︸

=D∆

 ⊆ D,

establishing the measurability of mi.
14

4 The Construction of a Terminal Expectation Space

This section constructs the universal expectation space as the set of all possible ex-
pectation hierarchies. Specifically, I extend Heifetz and Samet (1998)’s hierarchical
approach to constructing the universal type space.15 Specifically, I prove:

Theorem 1. Fix an expectation functor F , a non-empty set I of players, and a
measurable space (S,S) of states of nature. Then, the universal expectation space
−→
Ω∗ = 〈(Ω∗,D), (E∗i )i∈I〉 exists in the category of expectation spaces of I on (S,S).

The construction consists of eight steps.

14In the context of F = ∆, Lemma 2 (2) is closely related to Heifetz and Samet (1998, Lemma 4.5),
which allows one to exchange the order of σ and ∆ in the following way: if A is an algebra on a set
X then (σ(A))∆ = σ(A∆), where A∆ := {{µ ∈ ∆(Ω) | µ(E) ≥ p} ∈ P(∆(Ω)) | (E, p) ∈ A × [0, 1]}.
Lemma 2 (2) is also closely related to Ganguli, Hiefetz, and Lee (2016, Lemma 1), which generalize
Heifetz and Samet (1998, Lemma 4.5).

15That is, in the context of this paper, one can interpret the construction by Heifetz and Samet
(1998) as the special case of F = ∆ (aside from the fact that an expectation space is defined over a
non-product space Ω instead of the product type space).

23



First Step. The fist step defines, for each i ∈ I0, the measurable space (Hi,Hi)
of expectation hierarchies. The set H0 represents the set of states of nature, and for
each player i ∈ I, the set Hi encodes her expectation hierarchies (i.e., her first-order
expectations over (random variables on) S, her second-order expectations over S and
the players’ first-order expectations, and so on). The universal space (Ω∗,D∗) is carved
out from the product measurable space (H,H) :=

∏
i∈I0(Hi,Hi).

For i = 0, let
(H0,H0) := (S,S).

Next, I inductively define the spaces (Hi,Hi)i∈I of expectation hierarchies from
{(Hk

j ,Hk
j ) | j ∈ I0 and k ∈ N}. For j = 0 and any k ∈ N, let

(Hk
0 ,Hk

0) := (S,S).

For each player j ∈ I and any k ∈ N, I define the space of player j’s expectation
hierarchies of order up to k by

(Hk
j ,Hk

j ) :=

{
(F (S),SF ) if k = 1

(Hk−1
j × F (Hk−1),Hk−1

j × (Hk−1)F ) if k ≥ 2
,

where
(Hk−1,Hk−1) :=

∏
i∈I0

(Hk−1
i ,Hk−1

i ).

That is, H1
j = F (S) is the space of player j’s first-order expectations over (random

variables on) S. For k ≥ 2, the space Hk
j of player j’s expectation hierarchies of order

up to k consists of the space of her expectation hierarchies of order up to k−1 and the
expectations over the spaces of the players’ (including nature) expectation hierarchies
of order up to k−1. For instance, when k = 2, the space H2

j = F (S)×F (S× (F (S))I)
of player j’s expectation hierarchies of order up to 2 consists of the space of her first-
order expectation hierarchies and the expectations over the spaces of the first-order
expectation hierarchies of the players. Note that, for any k ≥ 2, the space (Hk

j ,Hk
j )

satisfies:

(Hk
j ,Hk

j ) =

(
F (S)×

k−1∏
`=1

F (H`),SF ×
k−1∏
`=1

H`
F

)
,

where
(H`,H`) :=

∏
i∈I0

(H`
i ,H`

i).

That is, the space Hk
j of player j’s expectation hierarchies of order up to k consists

of the space of expectations over S (i.e., the first-order expectations) and the space of
expectations over the players’ expectation hierarchies of order up to ` ∈ {1, . . . , k− 1}
(i.e., the (`+ 1)-th order expectations).
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With these definition in mind, I define the space (Hi,Hi) of expectation hierarchies
of player i:

(Hi,Hi) :=

(
F (S)×

∏
k∈N

F (Hk),SF ×
∏
k∈N

Hk
F

)
.

Thus, the space Hi of expectation hierarchies of player i consists of the k-th order
expectations of player i for all k ∈ N.

Finally, call the product space (H,H), which can also be written as

(H,H) =

(
S ×

∏
i∈I

Hi,S ×
∏
i∈I

Hi

)
,

the (expectation) hierarchy space. That is, the (expectation) hierarchy space H consists
of the set of states of nature and the spaces of expectation hierarchies of the players I.

To conclude the first step, I remark on the generation of the product σ-algebra H
on H:

Remark 8 (The product σ-algebra H). Since (H,H) is a product measurable space,
letting πk := πH

Hk be the projection from H onto Hk for all k ∈ N, the hierarchy space
H can be written as H =

∏
k∈NH

k and its product σ-algebra H is given by

H = σ

(⋃
k∈N

(πk)−1(Hk)

)
.

Second Step. The second step defines, for each given expectation space
−→
Ω , a map-

ping h : Ω→ H by defining

hki : (Ω,D)→ (Hk
i ,Hk

i ) for every (i, k) ∈ I0 × N.

The interpretation of each hki is the following. For i = 0, the mapping hk0 : (Ω,D)→
(Hk

0 ,Hk
0), associates, with each state ω ∈ Ω, the corresponding state of nature hk0(ω) ∈

Hk
0 (= S). For each player i ∈ I, the mapping hki : (Ω,D)→ (Hk

i ,Hk
i ), associates, with

each state ω ∈ Ω, player i’s expectation hierarchy hki (ω) ∈ Hk
i of order up to k.

Thus, the mapping h associates, with each state ω ∈ Ω in each given expectation
space, the expectation hierarchy h(ω) ∈ H induced by the state. When I stress the

dependence of h on the underlying expectation space
−→
Ω , I denote h−→

Ω
. As a preview,

in the third step, the universal expectation space (Ω∗,D∗) is carved out from the
hierarchy space (H,H) as the set of expectation hierarchies that can attain at some
state of some expectation space. Also, h turns out to be the unique morphism from
the given expectation space to the universal space.

Formally, take an expectation space
−→
Ω . I inductively define hi = (hki )k∈N for each

(i, k) ∈ I0×N. Let i = 0. For every k ∈ N, define a measurable function hk0 : T0 → Hk
0

by
hk0 := Θ.
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Ω F (Ω)

H1
i = F (S)

Ei

h1
i F (Θ)

Ω F (Ω)

F (H`)

Ei

F (h`) ◦ Ei F (h`)

Ω

Hk−1
i × F (Hk−1) = Hk

i

hki = (hk−1
i , F (hk−1) ◦ Ei)

Figure 5: Illustration of hki : h
1
i (Left), F (h`) ◦ Ei (Center), and hki (Right).

Define a measurable function h0 : T0 → H0 by

h0 := Θ.

Next, I define a profile (hi)i∈I of measurable functions hi : (Ω,D) → (Hi,Hi) by
inductively defining a profile (hki )i∈I of measurable functions hki : (Ω,D) → (Hk

i ,Hk
i )

for each k ∈ N. Let k = 1. As illustrated in the left panel of Figure 5, for each i ∈ I,
let h1

i : (Ω,D)→ (F (S),SF ) be the (composite) measurable function defined by

h1
i := F (Θ) ◦ Ei.

That is, recalling Expression (1), h1
i satisfies

h1
i (ω)[f ] = Ei(ω)[f ◦Θ] for any ω ∈ Ω and f ∈ B(S,S).

For each k ≥ 2, suppose that the profile (h`i)i∈I of measurable functions is defined for
each ` ∈ {1, . . . , k − 1}. Then, I define a measurable function hki : (Ω,D)→ (Hk

i ,Hk
i )

as
hki :=

(
hk−1
i , F (hk−1) ◦ Ei

)
,

where hk−1 : (Ω,D) → (Hk−1,Hk−1) is a measurable function defined by hk−1 :=
(hk−1

i )i∈I0 . The function hki is measurable because hk−1
i and F (hk−1)◦Ei are measurable.

Note that hki satisfies

hki = (h1
i , F (h1) ◦ Ei, . . . , F (hk−1) ◦ Ei),

where, for each ` ∈ {1, . . . , k − 1}, h` : (Ω,D) → (H`,H`) is a measurable func-
tion defined by h` := (h`i)i∈I0 . The central panel of Figure 5 illustrates F (h`) ◦ Ei :
Ω → F (H`), where ` ∈ {1, . . . , k − 1}. The right panel of Figure 5 illustrates
hki =

(
hk−1
i , F (hk−1) ◦ Ei

)
. For instance, one can see that h2

i (the right panel with
k = 2) is defined from h1

i (the left panel) and F (h1)◦Ei (the central panel with ` = 1).
Given that (hki )k∈N is defined, let

hi : (Ω,D)→ (Hi,Hi)

be such that
hki = πki ◦ hi for every (i, k) ∈ I0 × N,
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Ω H

Ω′
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h′

Ω H0 = S

Ω′

ϕ

h0 = Θ

h′0 = Θ′

Ω Hk
i

Ω′

ϕ

hki

h′ki

Figure 6: Illustrations of Lemma 3 (Left) and its Proof (Center and Right).

where πki := πHi
Hk
i

is the projection from (Hi,Hi) into (Hk
i ,Hk

i ). Call hi the (expectation)

hierarchy map of player i. Since each hki : (Ω,D) → (Hk
i ,Hk

i ) is measurable, by
construction, hi : (Ω,D) → (Hi,Hi) is measurable. Also, call hi(ω) the (expectation)
hierarchy of player i at ω. Note that hi satisfies

hi = (h1
i , (F (hk) ◦ Ei)k∈N).

Finally, since (hi)i∈I0 is defined, I define the (expectation) hierarchy map h : (Ω,D)→
(H,H) by

hk = πk ◦ h for every (i, k) ∈ I0 × N,

where each πk := πH
Hk is the projection from (H,H) into (Hk,Hk). Since each hk :

(Ω,D)→ (Hk,Hk) is measurable, by construction, h : (Ω,D)→ (H,H) is measurable.
Call h(ω) the expectation hierarchy at ω ∈ Ω. Precisely, for h(ω) = (hi(ω))i∈I0 , h0(ω) ∈
S is the state of nature that corresponds to the given state of the world ω; and for
each player i ∈ I, hi(ω) = (hki (ω))k∈N ∈ Hi =

∏
k∈NH

k
i is the expectation hierarchy of

player i.
As depicted in the left panel of Figure 6, I show that a morphism preserves expec-

tation hierarchies.

Lemma 3. If ϕ :
−→
Ω →

−→
Ω′ is a morphism, then h′ ◦ ϕ = h.

Lemma 3 generalizes Heifetz and Samet (1998, Proposition 5.1) in that the proof
hinges only on the fact that F is a functor (in addition to the definition of a morphism
in Definition 4 and those of hierarchy maps h and h′). More formally, the proof in
Appendix A.3 shows that hi = h′i ◦ ϕ for each i ∈ I0. For i = 0, as illustrated in the
central panel of Figure 6, the statement follows from the fact that ϕ is a morphism
(see the left panel of Figure 3). For each player i ∈ I, as illustrated in the right panel
of Figure 6, the proof inductively shows that hki = h′ki ◦ ϕ for all k ∈ N.

Third Step. The third step defines the measurable state space (Ω∗,D∗) from (H,H):
define Ω∗ from H as follows:

Ω∗ := {ω∗ ∈ H | ω∗ = h−→
Ω

(ω) for some expectation space
−→
Ω and ω ∈ Ω}.
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The underlying σ-algebra D∗ is inherited from the one on H:

D∗ := H ∩ Ω∗ (= {E ∩ Ω∗ ∈ P(Ω∗) | E ∈ H}) .

To see that Ω∗ is not empty, it is enough to show that there exists an expectation
space. Since S is not empty, choose s ∈ S and let (Ω,D) = ({s},P({s})). Then,
the function Θ : (Ω,D) → (S,S) defined by Θ(s) = s is measurable. One can also
introduce Ei such that Ei(s)[f ] = f(s) for any f ∈ B(Ω,D). Each player i’s expectation
operator thus is a measurable mapping from (Ω,D) to (F (Ω),DF ). Hence:

Remark 9. The set Ω∗ is not empty.

To conclude the third step, two remarks are in order. First, I briefly discuss the
“coherency” of expectation hierarchies. In the literature on the universal belief space,
papers such as Brandenburger and Dekel (1993) and Mertens and Zamir (1985) con-
struct the universal space as the (largest) space of coherent belief hierarchies, where
a belief hierarchy is coherent if all its (finite) levels of beliefs do not contradict one
another. In the construction of the universal expectation space in this paper, each
expectation hierarchy hi ∈ Hi of player i satisfies the same sense of coherency.16

Second, from now on, identify h as a mapping h : (Ω,D) → (Ω∗,D∗). Since the
original function h : (Ω,D) → (H,H) is measurable, by construction, h : (Ω,D) →
(Ω∗,D∗) is measurable.

Fourth Step. The fourth step defines a measurable mapping Θ∗ : (Ω∗,D∗)→ (S,S)
that associates, with each state of the world ω∗ ∈ Ω∗, the corresponding state of nature
Θ∗(ω∗) ∈ S. Observing that Ω∗ is a subset of H = S ×

∏
i∈I Hi, let Θ∗ : (Ω∗,D∗) →

(S,S) be (the restriction of) the projection, i.e.,

Θ∗ := πHS |Ω∗ .

By construction, Θ∗ : (Ω∗,D∗)→ (S,S) is measurable.

Also, Θ∗ ◦ h = h0 = Θ for any expectation space
−→
Ω : the first equality follows

because Θ∗ is the projection, and the second equality follows from the definition of h0.
The equation Θ∗ ◦h = Θ turns out to correspond to Condition (1) in Definition 4 once

the expectation space
−→
Ω∗ is defined (i.e., (ϕ,Ω′,Θ′) = (h,Ω∗,Θ∗) in the left panel of

Figure 3).

16For the expert reader, each expectation hierarchy hi ∈ Hi of player i satisfies a stronger notion
of coherency: namely, it admits an expectation hierarchy hi consisting of all possible countable levels
of expectations such that all its (countable) levels of expectations do not contradict one another. In
the context of beliefs, Fukuda (2024c) considers the stronger notion of coherency, and shows that
the construction of the universal space by coherency (e.g., Brandenburger and Dekel, 1993; Mertens
and Zamir, 1985) and the construction of the universal space by the set of all possible belief hierar-
chies attained by some state of some belief space (i.e., Heifetz and Samet, 1998) coincide with each
other, when the underlying space of states of nature is a measurable space (without any topological
assumption).
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Fifth Step. The fifth step defines each player’s expectation operator. For each i ∈
I, define E∗i : (Ω∗,D∗) → (F (Ω∗),D∗F ) as follows. For each ω∗ ∈ Ω∗, there are an

expectation space
−→
Ω and ω ∈ Ω such that ω∗ = h(ω). Then, as illustrated in Figure

8, define
E∗i (ω∗) := F (h) ◦ Ei(ω). (9)

In order to show that
−→
Ω∗ := 〈(Ω∗,D∗),Θ∗, (E∗i )i∈I〉 is an expectation space, one

needs to show: (i) E∗i defined by Expression (9) is well-defined, i.e., E∗i (ω∗) does not

depend on a specific choice of an expectation space
−→
Ω and a state ω ∈ Ω such that

ω∗ = h(ω); (ii) the mapping E∗i : (Ω∗,D∗) → (F (Ω∗),D∗F ) is measurable; and (iii) E∗i
satisfies the law of iterated expectations.

For the law of iterated expectations for E∗i , for any state ω∗ ∈ Ω∗, there exist an

expectation space
−→
Ω and a state ω ∈ Ω such that ω∗ = h(ω). Then, the Appendix

shows that E∗i inherits the law of iterated expectations from Ei in the expectation space
−→
Ω .

To show that each E∗i (ω∗) is well-defined and that each E∗i is measurable, I start
with:

Lemma 4. Take any ω∗ ∈ Ω∗ and i ∈ I. First,

(F (Θ∗) ◦ E∗i )(ω∗) = (ω∗i )
1, (10)

where (ω∗i )
1 ∈ F (S) is the projection of ω∗ ∈ Ω∗ on the space F (S) of the first-order

expectations over S (of player i). Second, for any k ∈ N,

(F (πk) ◦ E∗i )(ω∗) = (ω∗i )
k+1, (11)

where πk : Ω∗ → Hk is the projection and (ω∗i )
k+1 ∈ F (Hk) is the projection of ω∗ ∈ Ω∗

on the space F (Hk) of the expectations over the (k+1)-th order expectation hierarchies
of player i (i.e., the last component of Hk+1

i ).

The left panel of Figure 7 illustrates Expression (10). For any ω∗ ∈ Ω∗, take an

expectation space
−→
Ω and a state ω ∈ Ω with ω∗ = h(ω). On the one hand, the outer

solid arrows from Ω to F (S) through Ω∗ and F (Ω∗) depict the left-hand of Expression
(10):

(F (Θ∗) ◦ E∗i )(h(ω)).

One the other hand, the direct solid arrow from Ω to F (S) indicates

h1
i (ω) = (ω∗i )

1,

which is the right-hand side of Expression (10).
The right panel of Figure 7 illustrates Expression (11). For any ω∗ ∈ Ω∗, take

an expectation space
−→
Ω and a state ω ∈ Ω with ω∗ = h(ω). On the one hand, the
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S F (S)

Ω F (Ω)
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Ei

F (πk)

F (hk)

πk
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F (h)

Figure 7: Illustration of Lemma 4: Expression (10) (Left) and Expression (11) (Right)

upper solid arrows from Ω to F (Hk) through Ω∗ and F (Ω∗) depict the left-hand side
of Expression (11):

(F (πk) ◦ E∗i )(h(ω)).

On the other hand, the lower solid arrows from Ω to F (Hk) through F (Ω) indicate the
right-hand side of Expression (11), as

(ω∗i )
k+1 = (h(ω))k+1

i = (F (hk) ◦ Ei)(ω).

Lemma 4 implies that (F (πk) ◦ E∗)(ω∗) is well-defined (i.e., it does not depend on

any particular choice of an expectation space
−→
Ω and a state ω ∈ Ω with ω∗ = h(ω))

for all k ∈ N. Then, Lemma 2 (1) in Section 3.4 implies that E∗i (ω∗) is well-defined.
Lemma 4 also implies that F (πk) ◦ E∗i : (Ω∗,D∗) → (F (Hk),Hk

F ) is measurable.
Then, Lemma 2 (2) in Section 3.4 implies that E∗i : (Ω∗,D∗) → (F (Ω∗),D∗F ) is mea-
surable.

In sum:

Lemma 5 (Expectation Operator E∗i ). For each i ∈ I, the mapping E∗i : (Ω∗,D∗) →
(F (Ω∗),D∗F ) is player i’s expectation operator: it is a well-defined measurable mapping
that satisfies the law of iterated expectations.

Thus far, I have established that
−→
Ω∗ = 〈(Ω∗,D∗),Θ∗, (E∗i )i∈I〉 is an expectation

space. Before moving on to the sixth step, I remark that, within the class of expectation

spaces in which the average expectation is well-defined,
−→
Ω∗ belongs to the class (i.e., the

average expectation is well-defined in
−→
Ω∗) and reasoning about average expectations in

a given expectation space is preserved in
−→
Ω∗.

Remark 10 (Average Expectations in
−→
Ω∗). Let I = (0, 1] as in Remark 5. Fix ω∗ ∈ Ω∗

and f ∗ ∈ B(Ω∗,D∗). Then, there exist an expectation space
−→
Ω and a state ω ∈ Ω

30



Ω 3 ω ω∗ ∈ Ω∗

F (Ω) 3 Ei(ω) E∗i (ω∗) ∈ F (Ω∗)

Ei

h

F (h)

E∗i

Figure 8: Definition of E∗i

such that ω∗ = h(ω) and E∗i (ω∗)[f ∗] = Ei(ω)[f ∗ ◦ h] for all i ∈ I. Thus, one can define
E∗(ω∗) such that

E
∗
(ω∗)[f ∗] =

∫
I

E∗i (ω∗)[f ∗]di

=

∫
I

Ei(ω)[f ∗ ◦ h]di = E(ω)[f ∗ ◦ h].

Identifying the average expectation operator with the expectation operator of a hypo-
thetical player, Lemma 5 implies that E∗ : (Ω∗,D∗)→ (F (Ω∗),D∗F ), which satisfies the
above expression, is a well-defined measurable map.

Sixth Step. The sixth step shows that, for any expectation space
−→
Ω , the hierarchy

map h−→
Ω

is a morphism. Take an expectation space
−→
Ω . As discussed at the end of the

third step, the hierarchy map h−→
Ω

is measurable. Firstly,

Θ∗ ◦ h = h0 = Θ.

The first equality follows because Θ∗ is the projection. The second equality follows
from the definition of h0. Recall also the discussion at the end of the fourth step.

Secondly, for every i ∈ I, by definition (see Figure 8),

(E∗i ◦ h)(ω) = F (h) ◦ Ei(ω) for all ω ∈ Ω.

Since the two conditions in Definition 4 are satisfied, it follows that h−→
Ω

is a morphism.

Seventh Step. In order to prove that
−→
Ω∗ is universal, what remains is to show that

the morphism h−→
Ω

is unique. To that end, the seventh step shows that h∗ := h−→
Ω∗

is the
identity.

Lemma 6. The hierarchy map h∗ : Ω∗ → Ω∗ is the identity.
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The proof in the Appendix shows that, given h∗ = (h∗i )i∈I0 , each h∗i is a projection
from Ω∗ into Hi. For i = 0, the proof in the Appendix shows that the assertion follows
from the definition of h0. For each i ∈ I, the proof in the Appendix utilizes Lemma 4
which implies that

(h∗i (ω
∗))k = (ω∗i )

k for all k ∈ N.

The rest of the seventh step discusses the following two implications of Lemma 6.

Firstly, the lemma implies that the expectation space
−→
Ω∗ is non-redundant (Mertens and

Zamir, 1985). Formally, an expectation space
−→
Ω is non-redundant if two different states

ω and ω′ induce different expectation hierarchies h(ω) and h(ω′), i.e., the hierarchy map
h is injective.

Secondly, the lemma implies that the expectation space
−→
Ω∗ is minimal (Di Tillio,

2008; Friedenberg and Meier, 2011). To formalize the notion of minimality, recall that

the hierarchy map h on a given expectation space
−→
Ω associates, with each state ω, its

expectation hierarchy h(ω). Since D∗ is also defined through expectation hierarchies,
the σ-algebra σ(h) = h−1(D∗) corresponds to the collection of events in the given

expectation space
−→
Ω that can be expressed in terms of expectation hierarchies. The

following lemma asserts that one can define an expectation space on (Ω, σ(h)).

Lemma 7 (Expectation Space on (Ω, σ(h))). Let
−→
Ω = 〈(Ω,D),Θ, (Ei)i∈I〉 be an expec-

tation space. Denoting by h the hierarchy map and by σ(h) := h−1(D∗) the σ-algebra

generated by h, define
−→
Ω′ = 〈(Ω′,D′),Θ′, (E′i)i∈I〉 as follows: (i) (Ω′,D′) = (Ω, σ(h));

(ii) Θ′ = Θ; and (iii) E′i = Ei (i.e., E′i(ω)[f ] = Ei(ω)[f ] for each ω ∈ Ω and

f ∈ B(Ω, σ(h))) for each i ∈ I. Then,
−→
Ω′ is an expectation space.

With this in mind, an expectation space
−→
Ω is minimal if D = h−1(D∗), i.e., the

collection of events D consists only of those events that are expressed in terms of

expectation hierarchies. Lemma 6 implies that
−→
Ω∗ is minimal.

Eighth Step. Finally, the eighth step shows that
−→
Ω∗ is universal. Given the previous

lemmas (whose proofs are in the Appendix), one can show the main theorem as follows:

Proof of Theorem 1. For any expectation space
−→
Ω , the above arguments show that

the hierarchy map h is a morphism from
−→
Ω to the expectation space

−→
Ω∗. Thus, it

suffices to show that a morphism is unique. Let ϕ :
−→
Ω →

−→
Ω∗ be a morphism. Then,

ϕ = h∗ ◦ ϕ = h, where the first equality follows from Lemma 6 and the second from
Lemma 3. Thus, the morphism is unique, and the proof is complete.

5 Discussions

This section discusses the main result and provides concluding remarks. Specifically,
Section 5.1 discusses the alternative formulation of an expectation space in which each
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“type” of each player induces expectations over (random variables on) the types of the
other players. Under this alternative specification, the universal “expectation-type”
space has the property that the expectation map is an isomorphism between the set
of types of a given player and the expectations over the types of the other players’
types. Section 5.2 discusses the possibility to axiomatize (in the sense of providing
a syntactical system of) interactive expectations. Section 5.3 discusses the possibility
of incorporating expectation dynamics. Section 5.4 discusses the possibility to fur-
ther generalize the properties of expectations. Section 5.5 discusses the possibility to
apply the functor approach to other modes of reasoning such as interactive prefer-
ences. Section 5.6 briefly discusses the introduction of a topological structure to study
the continuity of a strategic outcome in expectation hierarchies. Section 5.7 provides
concluding remarks.

5.1 Completeness

This paper formulates an expectation space slightly differently from the type-space
literature, in which each type of each player induces a belief over the types of the other
players.17 This is because (i) the expectation-space approach taken in this paper allows
for directly iterating players’ expectation operators (Ei)i∈I and (ii) the underlying
introspection property is formulated as the law of iterated expectations.

Specifically, under the “type-space” formulation, an expectation-type space is a

tuple
−→
Ω = 〈(Ti, Ti)i∈I0 , (Ei)i∈I〉 with the following properties: (i) (T0, T0) = (S,S); (ii)

each (Ti, Ti) is a measurable space; and (iii) each Ei : (Ti, Ti) → (F (T−i), (T−i)F ) is a
measurable map that associates, with each type ti ∈ Ti, the expectation Ei(ti) over
the set of bounded Borel measurable functions on (T−i, T−i) :=

∏
j∈I0\{i}(Tj, Tj). The

analysis in this paper suggests that one can construct the universal expectation-type

space
−→
Ω∗ = 〈(T ∗i , T ∗i )i∈I0 , (E∗i )i∈I〉.18

One advantage of this alternative formulation is that the universal expectation-type
space is also complete (e.g., Brandenburger, 2003): each E∗i : T ∗i → F (T ∗−i) is surjective
(in fact, a measurable isomorphism). This would follow because each expectation-type
space is regarded as a coalgebra in the language of category theory (e.g., Moss and
Viglizzo, 2004, 2006), and then Lambek (1968)’s Lemma in category theory asserts
that the mapping (idS, (E∗i )i∈I) : S ×

∏
i∈I T

∗
i → S ×

∏
i∈I F (T ∗−i) associated with a

terminal object is a measurable isomorphism.

Instead, for the universal expectation space
−→
Ω∗, the profile of measurable mappings

(Θ∗, (E∗i )i∈I)
17In this respect, the modeling approach is closer to a belief space a la Mertens and Zamir (1985)

in which, at each state, each player holds a belief over the state space.
18In the context of beliefs, Fukuda (2025a) shows that, in a class of belief spaces (where each player

at each state holds a belief over the entire set of states of the world) in which the players are fully
introspective about their beliefs, the universal belief space has a type-space structure (indeed, the
universal belief space is the universal type space).
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defines a bijection between the underlying state space Ω∗ and the space of all possible
players’ expectations over Ω∗, i.e.,

{(s, (Ji)i∈I) ∈ S × F (Ω∗)I | there are an expectation space
−→
Ω and ω ∈ Ω

such that (s, (Ji)i∈I) = (Θ(ω), (Ei(ω) ◦ h−1)i∈I)}.

The mapping (Θ∗, (E∗i )i∈I) is injective because
−→
Ω∗ is non-redundant, and it is surjective

because
−→
Ω∗ is universal.19

5.2 Syntactical and Hierarchical Constructions

This paper formulates a functor (i.e., an expectation functor) to construct the terminal
expectation space as the space consisting of expectation hierarchies. This paper takes
the “hierarchical” approach (which may be useful for other applications to be briefly
discussed in Section 5.5). In the literature, however, there is an alternative approach to
constructing the universal space, namely, the “syntactical approach,” in which players’
reasoning is expressed syntactically as formulas. In the context of beliefs, for example,
a syntactical formula saying “player i beliefs a formula e with probability at least p”
is represented as another formula (say, βpi (e)), and each state in the universal belief
space consists of a set of formulas that are satisfied at that state (e.g., see Aumann,
1999; Fukuda, 2024b; Heifetz and Samet, 1998; Meier, 2006, 2012).

It would be possible (and interesting) to axiomatize players’ interactive reasoning
about their expectations. To that end, one would define a collection of random variables
(on a given set S of states of nature) syntactically: that is, for each random variable f
(on S) and each real number r, one can define a formula (f ≥ r) that can be read as
“the value of the random variable f is at least as large as r” (this formula may be true
at some states and false at the other states). One can define whether the formula holds
(or not) at a state (in a particular expectation space). One can also define each player
i’s syntactic expectation operator Ei in order to define such formula as (Ei[f ] ≥ r)
saying that “the value of player i’s expectation Ei(f) of f is at least as large as r.”20

5.3 Allowing for Expectation Dynamics

Some applications may call for incorporating one’s expectations over time.21 In the
framework of this paper, one can introduce time indices on players’ expectations. For

19For the sense in which the universal belief space is complete, papers such as Brandenburger and
Keisler (2006), Fukuda (2024b), and Meier (2012) reformulate the notion of completeness in terms of
syntactic languages. Fukuda (2025a) also shows that the universal belief space admits a type-space
representation, which is universal (among the class of type spaces) and consequently complete.

20For a syntactical approach to expectations, see, for instance, Halpern and Pucella (2002, 2007).
21In fact, in some strands of literature in macroeconomics in which reasoning about expectations

would matter, players (e.g., firms) reason about dynamic expectations of future economic variables
such as future inflation rates or future policy interest rates (recall the related literature).
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instance, suppose that player i’s expectation operator at time t ∈ N is given by Ei,t.
The corresponding introspection property, i.e., the law of iterated expectations, is

Ei,t = Ei,tEi,t′ for any t, t′ ∈ N with t′ ≥ t.

The construction of the terminal expectation space would go through by identifying
the set of players as I×N, with the law of iterated expectations of the above form. As
will be discussed in Section 5.5, one could alternatively analyze players’ expectations
induced from conditional probability systems (CPSs) as in Battigalli and Siniscalchi
(1999) and Guarino (2017, 2025).

5.4 Allowing for Discontinuous Expectations

In this paper, Definition 2 in Section 2.3 assumes the continuity properties for expecta-
tions. Such continuity properties make it possible to define the expectation operator of
the terminal expectation space as in Lemma 5 through the properties of an expectation
functor established in Section 3.4.

An alternative approach that dispenses with the continuity properties is to consider
the hierarchy space (H,H) that consists of transfinite (more precisely, all possible
countable) levels of expectation hierarchies. Once the space (Hα,Hα) of expectation
hierarchies of order up to α is defined for each countable ordinal α (instead of each
natural number k), the union of (πα)−1(Hα) itself generates a σ-algebra on H, as
opposed to Remark 8, which uses the operation of σ(·).

In the context of qualitative beliefs (which do not satisfy the continuity properties or
monotonicity), Fukuda (Forthcoming) constructs the universal belief space consisting
of transfinite levels of qualitative belief hierarchies. An extension of the framework
of expectation spaces that allows for the violation of the properties of expectations in
Definition 2 in Section 2.3 would be an interesting avenue for future research.

Lastly, while it is a different context from the violation of the continuity properties of
expectations (i.e., consider an expectation functor that satisfies Definition 2 in Section
2.3), as discussed in footnote 16, the use of transfinite levels of expectations may play
a role in defining the notion of coherency under which the universal expectation space
is characterized by the set of coherent expectation hierarchies (when the underlying
space of states of nature is a measurable space without any topological assumptions).
Namely, as in footnote 16, an expectation hierarchy hi ∈ Hi of player i is coherent if it
admits an expectation hierarchy hi = (h

α

i )α consisting of all possible countable levels of
expectations such that all its (countable) levels of expectations do not contradict one
another. It would be an interesting future research avenue to generalize the universal-
type-space construction by Brandenburger and Dekel (1993) and Mertens and Zamir
(1985) to the universal expectation space in the context of this paper in which the space
(S,S) of states of nature is a measurable space without any topological assumptions.
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5.5 Other Forms of Interactive Reasoning

This paper uses the notion of a functor as a representation of expectations. The use
of a functor may be useful to study other modes of reasoning. First, the applications
of a functor F to countably-additive, finitely-additive, and non-additive beliefs are im-
mediate.22 Second, the functor approach may also be useful for interactive preferences
(e.g., Di Tillio, 2008; Epstein and Wang, 1996; Ganguli, Hiefetz, and Lee, 2016; Pi-
vato, 2024b): players hold preferences (instead expectations) over the set of bounded
measurable functions. Third, the approach of this paper may be useful for ambiguous
beliefs (e.g., Ahn, 2007; Alon and Heifetz, 2014), conditional beliefs (e.g., Battigalli
and Siniscalchi, 1999; Guarino, 2017, 2025), and lexicographic beliefs (e.g., Branden-
burger, Friedenberg, and Keisler, 2008; Catonini and Nicodemo, 2024; Halpern, 2010;
Tsakas, 2014).23

5.6 Additional Topological Structures

As an avenue for future research, it would also be interesting to introduce some topolog-
ical structure on an expectation space to study the impact of higher-order expectations
on strategic outcomes. On the one hand, it would be conceptually useful to construct
the universal expectation space without using any underlying topological structure in
the sense that players’ reasoning about their higher-order expectations has nothing to
do with the underlying topological structure. In the context of the literature on type
spaces, Heifetz and Samet (1998) construct such “topology-free” universal type space.
In this spirit, this paper constructs the universal expectation space without the aid of
a topology.

On the other hand, for applications, it would be interesting to study the approxi-
mation of the effect of an entire expectation hierarchy by a finite one. A topological
structure on an underlying space may be useful for such analyses.24 For instance,

22That is, as long as one considers a situation in which one’s belief (at each state) is represented by a
monotone and continuous set function, the methodology of this paper guarantees the existence of the
universal space that consists of all possible finite levels of interactive beliefs. Note that, without the
continuity assumption, the universal belief space may consist of transfinite levels of interactive beliefs
(e.g., see Meier (2006) for finitely-additive beliefs). For an alternative construction of a canonical
non-additive belief space, see also Pintér (2012). Fukuda (2025b) characterizes various forms of non-
additive beliefs using an alternative approach using players’ “p-belief” operators.

23Also, the functor approach may be useful for qualitative beliefs and knowledge: see Branden-
burger (2003), Brandenburger and Keisler (2006), Mariotti, Meier, and Piccione (2005), and Salonen
(2009a,b) for “possibility structures;” and see Aumann (1999), Fagin (1994), Fagin et al. (1999), Fa-
gin, Halpern, and Vardi (1991), Fukuda (Forthcoming), and Heifetz and Samet (1999) for state space
models of knowledge or qualitative beliefs. However, due to the lack of continuity, the universal space
may consist of transfinite levels of interactive beliefs (see, for instance, Fukuda, Forthcoming).

24Also, it would be interesting to study whether the iteration of the average expectation operator

E
k
(= EEk−1

) converges to some expectation operator (e.g., the expectation operator derived from a
common prior in a setting in which players’ expectation operators are derived from the common prior
conditional on their information): see, for instance, Golub and Morris (2017), Hellman (2011), and
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Nyarko (1997) studies a model in which the unique Nash equilibrium is continuous in
the product topology on the universal type space. Also, Weinstein and Yildiz (2007)
approximate equilibrium actions (of normal-form games) by finitely many orders of
beliefs (see also Weinstein and Yildiz, 2011).

5.7 Conclusion

Theorem 1 of this paper constructs the universal expectation space: it is an expectation
space to which any expectation space is mapped to the universal space in a structure-
preserving manner. The universal expectation space consists of players’ expectation
hierarchies. To formulate the space of expectations and to construct the universal
expectation space for various notions of expectations such as those derived from stan-
dard countably-additive, finite-additive, or non-additive beliefs, the paper takes the
category-theoretic approach to formulate the space of expectations as a functor.

The formulation of expectation spaces is slightly different from that of type spaces
on beliefs in order to impose the law of iterated expectations as a primary introspection
property. Section 3.3 discusses economic examples that fit into the framework of this
paper. As discussed in Section 5.1, the universal expectation would also exist under the
alternative formulation. Section 5.2 suggests that a syntactical approach to establishing
the universal expectation space would also be possible. As discussed in Section 5.5, it
is an interesting avenue for future research to explore the category-theoretic approach
to other forms of beliefs, preferences, and expectations. As briefly discussed in Section
5.6, it would also be interesting to introduce an additional topological structure to
explore the impact of higher-order expectations on strategic outcomes.
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A Appendix

A.1 Section 2

Proof of Lemma 1. Given the definition of F in Definition 2, it suffices to show that
F satisfies Conditions (2)-(4) in Definition 1.

First, for Condition (2), the mapping F (ϕ) is measurable because, for any (f ′, r) ∈
B(X,′X ′)× R,

(F (ϕ))−1({J ′ ∈ F (X ′) | J ′(f ′) ≥ r}) = {J ∈ F (X) | J(f ′ ◦ ϕ) ≥ r} ∈ XF .
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Second, for Condition (3), it follows from Expression (1) that, for any measurable
space (X,X ),

F (idX) = idF (X).

Third, for Condition (4), take any measurable mappings ϕ : (X,X )→ (X ′,X ′) and
ψ : (X ′,X ′) → (X ′′,X ′′). The mapping F (ψ) ◦ F (ϕ) : F (X) → F (X ′′) satisfies, for
any J ∈ F (X) and f ′′ ∈ B(X ′′,X ′′),

(F (ψ) ◦ F (ϕ))(J)(f ′′) = F (ψ) (F (ϕ)(J)) (f ′′)

= (F (ϕ)(J))[f ′′ ◦ ψ]

= J [(f ′′ ◦ ψ) ◦ ϕ]

= J [f ′′ ◦ (ψ ◦ ϕ)]

= F (ψ ◦ ϕ)(J)(f ′′),

implying that F (ψ) ◦ F (ϕ) = F (ψ ◦ ϕ) as desired.

A.2 Section 3

To prove Lemma 2, Appendix A.2.1 provides further technical preliminaries on measure
theory.25 Appendix A.2.2 then proves Lemma 2.

A.2.1 Further Technical Preliminaries on Measure Theory

A sequence (En)n∈N of subsets of an underlying set X is a non-decreasing sequence
with limit E, denoted by En ↑ E, if (i) Em ⊆ En for any m,n ∈ N with m ≤ n and
if (ii) E =

⋃
n∈NEn. Similarly, a sequence (En)n∈N of subsets of X is a non-increasing

sequence with limit E, denoted by En ↓ E, if (i) En ⊆ Em for any m,n ∈ N with
m ≤ n and if (ii) E =

⋂
n∈NEn.

If a sequence (En)n∈N of elements of X satisfies En ↑ E, then IEn ↑ IE. Similarly, if
the sequence (En)n∈N of elements of X satisfies En ↓ E, then IEn ↓ IE.

A collectionM of subsets of an underlying set X is a monotone class if the following
holds: if (En)n∈N is either a non-decreasing sequence or a non-increasing sequence of
elements of M with limit E, then E ∈M. The monotone class theorem states that if
M is a monotone class including an algebra A thenM includes the smallest σ-algebra
σ(A). In particular, if the algebra A is a monotone class, then it is a σ-algebra.

A function ϕ : (X,X ) → (R,BR) is simple if there are a finite disjoint collection
of measurable sets (Ei)

n
i=1 and real numbers (ai)

n
i=1 such that ϕ =

∑n
i=1 aiIEi . It is

well-known in measure theory that a non-negative Borel measurable function ϕ on
a measurable space (X,X ) is the limit of a non-decreasing sequence of non-negative
finite-valued simple functions (ϕn)n∈N. This result implies that any bounded Borel
measurable function ψ ∈ B(X,X ) is the limit of a non-decreasing sequence of finite-
valued simple functions (ψn)n∈N.

25As in footnote 7, the materials in Appendix A.2.1 can be found, for instance, in Ash and Doléans-
Dade (2000).
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Figure 9: Doob-Dynkin Lemma

The following result is known as Doob-Dynkin Lemma. Let ϕ : X → Y be a
mapping. Let Y be a σ-algebra on Y , and let σ(ϕ) := ϕ−1(Y) be the σ-algebra
induced by ϕ. Then, f : (X, σ(ϕ)) → (R,BR) is measurable if and only if there exists
a measurable function ψ : (Y,Y)→ (R,BR) with f = ψ ◦ ϕ. See Figure 9.

A.2.2 Proof of Lemma 2

As in the beginning of Section 3.4, let (Ω`,D`)`∈N be a collection of measurable spaces.
For each k ∈ N, let (Ωk,Dk) be defined as in Expression (7). Also, let (Ω,D) be defined
as in Expression (8). To prove Lemma 2, I provide the following auxiliary lemmas.

Lemma 8. For any A ∈ D, there exists a non-decreasing sequence of sets (Ak)k∈N with
limit A such that, for each k ∈ N, there exists Bk ∈ Dk with Ak = (πk)−1(Bk).

Proof of Lemma 8. To show the statement, let M be a sub-collection of D such that
A ∈M if and only if there exists a non-decreasing sequence of sets (Ak)k∈N with limit
A such that, for each k ∈ N, there exists Bk ∈ Dk with Ak = (πk)−1(Bk).

First, I show
⋃
k∈N(πk)−1(Dk) ⊆ M. Take A ∈

⋃
k∈N(πk)−1(Dk). Then, there

exists k0 ∈ N such that A = (πk0)−1(B) for some B ∈ Dk0 . For any k ∈ N with
k < k0, let Bk = ∅ ∈ Dk. For any k ∈ N with k ≥ k0, choose Bk ∈ Dk with
(πk)−1(Bk) = (πk0)−1(Bk0). Then, A ∈M.

Second, observe that
⋃
k∈N(πk)−1(Dk) is an algebra. Since

⋃
k∈N(πk)−1(Dk) ⊆M ⊆

D, if
⋃
k∈N(πk)−1(Dk) is a monotone class, then it follows from the monotone class

lemma (recall Appendix A.2.1) that M = D, which will complete the proof of the
statement.

Third, therefore, it suffices to show thatM is a monotone class. Firstly, let (An)n∈N
be a non-decreasing sequence from M with A :=

⋃
n∈NAn. For each An ∈ M, there

exists a sequence (Akn)k∈N with Akn ↑ An. To show that A ∈M, define, for each k ∈ N,

Ak =
⋃
n∈N

Akn.

For each k ∈ N, since Akn ∈ (πk)−1(Dk) for each n ∈ N and (πk)−1(Dk) is a σ-algebra,
it follows that Ak ∈ (πk)−1(Dk). If k ≤ ` then it follows from Akn ⊆ A`n for all n ∈ N
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that, taking the union over n ∈ N, Ak ⊆ A`. Then,⋃
k∈N

Ak =
⋃
k∈N

⋃
n∈N

Akn =
⋃
n∈N

⋃
k∈N

Akn =
⋃
n∈N

An = A.

Secondly, if (An)n∈N is a non-increasing sequence fromM with A :=
⋂
n∈NAn, then

a similar proof replacing a union with an intersection proves this case. More precisely,
for each An ∈ M, there exists a non-increasing sequence (Akn)k∈N with limit An. To
show that A ∈M, define, for each k ∈ N,

Ak =
⋂
n∈N

Akn.

For each k ∈ N, since Akn ∈ (πk)−1(Dk) for each n ∈ N and (πk)−1(Dk) is a σ-algebra,
it follows that Ak ∈ (πk)−1(Dk). If k ≤ ` then it follows from Akn ⊆ A`n for all n ∈ N
that, taking the intersection over n ∈ N, Ak ⊆ A`. Then,⋂

k∈N

Ak =
⋂
k∈N

⋂
n∈N

Akn =
⋂
n∈N

⋂
k∈N

Akn =
⋂
n∈N

An = A.

The proof is complete.

Lemma 9. For any bounded Borel measurable function f ∈ B(Ω,D), there exists a
sequence (ϕk)k∈N of bounded Borel measurable functions ϕk ∈ B(Ω, (πk)−1(Dk)) such
that ϕk ↑ f .

Proof of Lemma 9. The proof consists of four steps. In the first step, recalling Ap-
pendix A.2.1, for any f ∈ B(Ω,D), there exists a sequence (fn)n∈N of simple functions
on (Ω,D) such that fn ↑ f . Denote each fn by

fn =
mn∑
j=1

xn,jIAn,j ,

where An,j ∈ D and xn,j ∈ R for each n ∈ N and j ∈ {1, . . . ,mn}.
The second step invokes Lemma 8 to approximate each fn. Fix n ∈ N. For each

An,j ∈ D, it follows from Lemma 8 that there exists a non-decreasing sequence (Akn,j)n∈N
of sets with limit An,j such that, for each k ∈ N, there exists Bk

n,j ∈ Dk such that
Akn,j = (πk)−1(Bk

n,j). Define:

fkn :=
mn∑
j=1

xn,jIAkn,j .

By construction, fkn ∈ B(Ω, (πk)−1(Dk)).
The third step defines a sequence (ϕk)k∈N. For each k ∈ N, let

ϕk := sup
n∈N

fkn .
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For each k ∈ N, the function ϕk is a well-defined bounded function because ‖fkn‖ ≤ ‖f‖
for all n ∈ N. The function ϕk is also Borel measurable because it is the supremum
of a sequence of Borel measurable functions. I show that the sequence (ϕk)k∈N is
non-decreasing. For each k ∈ N, it follows from

fkn ≤ fk+1
n ≤ ϕk+1 for all n ∈ N

that
ϕk ≤ ϕk+1.

The fourth step shows that, for each ω ∈ Ω, ϕk(ω) ↑ f(ω). Fix ω ∈ Ω, and take
ε > 0. There exists n0 ∈ N such that if n ≥ n0 then

f(ω)− ε

2
< fn(ω).

For this n0 ∈ N, there exists k0 ∈ N such that if k ≥ k0 then

f(ω)− ε < fn0(ω)− ε

2
< fkn0

(ω) ≤ ϕk(ω) ≤ f(ω).

In sum, fixing ω ∈ Ω, for any ε > 0, there exists k0 ∈ N such that if k ≥ k0 then

f(ω)− ε < ϕk(ω) < f(ω) + ε.

Since (ϕk(ω))k∈N is a non-decreasing sequence, it follows that ϕk(ω) ↑ f(ω), as desired.

Now, I prove Lemma 2.

Proof of Lemma 2. 1. It suffices to show the “if” part. Assuming the supposition,
we show that J [f ] = J ′[f ] for all f ∈ B(Ω,D). Take f ∈ B(Ω,D). It follows
from Lemma 9 that there is a sequence (fk)k∈N of Borel measurable maps fk :
(Ω, (πk)−1(Dk)) → (R,BR) such that fk ↑ f . For each k ∈ N, it follows from
Doob-Dynkin Lemma (recall Appendix A.2.1) that there is a Borel measurable
map ϕk : (Ωk,Dk)→ (R,BR) such that

fk = ϕk ◦ πk.

Then,

J [fk] = J [ϕk ◦ πk] = F (πk)(J)[fk]

= F (πk)(J ′)[fk] = J ′[ϕk ◦ πk] = J ′[fk],

where the third equality follows from the supposition. By continuity,

J [f ] = lim
k→∞

J [fk] = lim
k→∞

J ′[fk] = J ′[f ],

as desired.
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Figure 10: The Proof of Lemma 3

2. The “only if” part follows because the composite F (πk) ◦ Ei of two measur-
able functions is measurable. In order to show the “if” part, it is enough to
show that, for any bounded Borel measurable function f ∈ B(Ω,D) and r ∈ R,
(Ei[f ])−1([r,∞)) ∈ D. Take f ∈ B(Ω,D). It follows from Lemma 9 that there
is a sequence (fk)k∈N of Borel measurable maps fk : (Ω, (πk)−1(Dk)) → (R,BR)
such that fk ↑ f . For each k ∈ N, it follows from Doob-Dynkin Lemma that
there is a Borel measurable map ϕk : (Ωk,Dk)→ (R,BR) such that fk = ϕk ◦ πk.
Take r ∈ R, and I consider r − 1

m
where m ∈ N (later I will take the limit as

m→∞). Then, it follows from the supposition that

(Ei[fk])−1([r − 1

m
,∞)) = (Ei[ϕk ◦ πk])−1([r − 1

m
,∞))

= ((F (πk) ◦ Ei)[ϕk])−1([r − 1

m
,∞)) ∈ D.

Then, by the continuity of Ei, as in the standard proof of the fact that the limit
of measurable functions is measurable, I have:

(Ei[f ])−1([r,∞)) =
⋂
m∈N

⋃
k0∈N

⋂
k≥k0

(Ei[fk])−1([r − 1

m
,∞)) ∈ D.

The proof is complete.

A.3 Section 4

Proof of Lemma 3. As discussed in the main text, I show

h′i ◦ ϕ = hi for all i ∈ I0.

First, let i = 0. I have

h′0 ◦ ϕ = Θ′ ◦ ϕ = Θ = h0,
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where the first equality follows from the definition of h′0, the second from the definition
of a morphism ϕ (i.e., Condition (1) in Definition 4), and the third from the definition
of h0. See also the central panel of Figure 6.

Second, I show that h′i ◦ ϕ = hi for all i ∈ I by showing that

h′ki ◦ ϕ = hki for all (k, i) ∈ N× I.

I prove the statement by induction on k. Let k = 1. For any i ∈ I,

h′1i ◦ ϕ = (F (Θ′) ◦ E′i) ◦ ϕ
= F (Θ′) ◦ (E′i ◦ ϕ)

= F (Θ′) ◦ (F (ϕ) ◦ Ei)
= (F (Θ′) ◦ F (ϕ)) ◦ Ei
= F (Θ) ◦ Ei
= h1

i .

The first equality follows from the definition of h′1i . Likewise, the sixth equality follows
from the definition of h1

i . The second and fourth equalities follow from the associativity
of composite functions. The third equality follows from the definition of a morphism
ϕ (i.e., Condition (2) in Definition 4). For the fifth equality, since ϕ is a morphism, it
follows from Condition (1) in Definition 4 that Θ = Θ′ ◦ϕ. Then, since F is a functor,

F (Θ) = F (Θ′ ◦ ϕ) = F (Θ′) ◦ F (ϕ).

The left panel of Figure 10 illustrates this argument.
Suppose that the inductive hypothesis for k holds. Observe that

h′k+1
i ◦ ϕ =

(
h′ki , F (h′k) ◦ E′i

)
◦ ϕ

=
(
h′ki ◦ ϕ, (F (h′k) ◦ E′i) ◦ ϕ

)
and

hk+1
i =

(
hki , F (hk) ◦ Ei

)
.

Since h′ki ◦ ϕ = hki follows from the induction hypothesis, it suffices to show

(F (h′k) ◦ E′i) ◦ ϕ = F (hk) ◦ Ei.

However, this latter equation follows because(
F (h′k) ◦ E′i

)
◦ ϕ = F (h′k) ◦ (E′i ◦ ϕ)

= F (h′k) ◦ (F (ϕ) ◦ Ei)
=
(
F (h′k) ◦ F (ϕ)

)
◦ Ei

= F (h′k ◦ ϕ) ◦ Ei
= F (hk) ◦ Ei.
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The first and third equalities follow because composite functions are associative. The
second equality follows because ϕ is a morphism (i.e., Condition (2) in Definition 4).
The fourth equality follows because F is a functor. The fifth equality follows from the
induction hypothesis. The right panel of Figure 10 illustrates this argument.

Consequently, h′ ◦ ϕ = h.

Proof of Lemma 4. For any ω∗ ∈ Ω∗, take any expectation space
−→
Ω and state ω ∈ Ω

such that ω∗ = h(ω). Let i ∈ I.
First, one has:

(F (Θ∗) ◦ E∗i )(ω∗) = (F (Θ∗) ◦ E∗i )(h(ω)) = F (Θ∗) ((E∗i ◦ h)(ω))

= F (Θ∗) ((F (h) ◦ Ei)(ω)) = ((F (Θ∗) ◦ F (h)) ◦ Ei) (ω)

= (F (Θ∗ ◦ h) ◦ Ei) (ω)

= (F (Θ) ◦ Ei) (ω)

= h1
i (ω) = (ω∗i )

1.

The first and last equalities follow because ω∗ = h(ω). The second and fourth equalities
follow from the properties of composite functions. The third equality follows from
Expression (9). The fifth equality follows because F is a functor. The sixth equality
follows from the definition of h in the second step of the construction. The left panel
of Figure 7 illustrates the argument.

Second, let k ∈ N. Then,

F (πk) ◦ E∗i (ω∗) = F (πk ◦ h) ◦ Ei(ω)

= F (hk) ◦ Ei(ω)

= (hi(ω))k+1 = (ω∗i )
k+1.

The first equality follows from the definition of E∗i in the fifth step of the construction.
The second and third equalities follow from the definition of h. The fourth equality
follows from ω∗ = h(ω). The right panel of Figure 7 illustrates the first and second
equalities.

Proof of Lemma 5. As discussed in the main text, the proof consists of three steps.

First, I show that E∗i (ω∗) is well-defined irrespective of the choices of
−→
Ω and ω ∈ Ω

with ω∗ = h(ω). Take ω∗ ∈ Ω∗. Suppose that there are expectation spaces
−→
Ω and

−→
Ω′

and states ω ∈ Ω and ω′ ∈ Ω′ such that ω∗ = h(ω) and ω∗ = h′(ω′) (see also Figure
11).

Take any f ∗ ∈ B(Ω∗,D∗). On the one hand,

Ei(ω)[f ∗ ◦ h] = (F (h) ◦ Ei(ω))[f ∗].

On the other hand,
E′i(ω′)[f ∗ ◦ h′] = (F (h′) ◦ E′i(ω′))[f ∗].
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Figure 11: The Proof of Lemma 5: the Second Step.

Hence, if, as depicted in Figure 11,

(F (h) ◦ Ei(ω))[·] = (F (h′) ◦ E′i(ω′))[·],

then E∗i (h(·)) := F (h) ◦Ei(·) is well-defined. By Lemma 2 (1), it suffices to show that,
for each k ∈ N,

F (πk) ◦ (F (h) ◦ Ei(ω)) = F (πk) ◦ (F (h′) ◦ E′i(ω′)) .

However, recalling that h(ω) = ω∗ = h′(ω′), it follows from the first step that

F (πk) ◦ (F (h) ◦ Ei(ω)) = F (hk) ◦ Ei(ω)

= (ω∗i )
k+1

= F (h′k) ◦ E′i(ω′) = F (πk) ◦ (F (h′) ◦ E′i(ω′)) .

Thus, each E∗i is well-defined.
Second, I show that E∗i : (Ω∗,D∗) → (F (Ω∗),D∗F ) is measurable. By Lemma 2

(2), it is enough to show that, for all k ∈ N, F (πk) ◦ E∗i : (Ω∗,D∗) → (F (Hk),Hk
F ) is

measurable, that is, for any fk ∈ B(Hk,Hk) and r ∈ R,

(F (πk) ◦ E∗i )−1({Jk ∈ F (Hk) | Jk[fk] ≥ r}) ∈ D∗.

However, it follows from Expression (11) that

(F (πk) ◦ E∗i )−1({Jk ∈ F (Hk) | Jk[fk] ≥ r}) = {ω∗ ∈ Ω∗ | (ω∗i )k+1[fk] ≥ r} ∈ D∗.

Third, I show that the law of iterated expectations holds. Take any f ∗ ∈ B(Ω∗,D∗).
For any ω∗ ∈ Ω∗, there exist an expectation space

−→
Ω and ω ∈ Ω such that ω∗ = h(ω).

Then,

E∗i (ω∗)[f ∗] = Ei(ω)[f ∗ ◦ h].
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By the law of iterated expectations in the expectation space
−→
Ω , the right-hand side of

the above equation satisfies:

Ei(ω)[f ∗ ◦ h] = Ei(ω)[Ei(·)[f ∗ ◦ h]].

Then, by the definition of E∗i , the term inside the expectation functional Ei(ω) in the
right-hand side of the above equation satisfies

Ei(·)[f ∗ ◦ h] = E∗i (h(·))[f ∗]
= (E∗i [f ∗] ◦ h)(·),

and operating Ei(ω) yields

Ei(ω)[f ∗ ◦ h] = Ei(ω)[E∗i [f ∗] ◦ h].

By the definition of E∗i , I have

Ei(ω)[E∗i [f ∗] ◦ h] = E∗i (h(ω))[E∗i [f ∗]]
= E∗i (ω∗)[E∗i [f ∗]].

Hence, I obtain:

E∗i (ω∗)[f ∗] = E∗iE∗i (ω∗)[f ∗] for all f ∗ ∈ B(Ω∗,D∗) and ω∗ ∈ Ω∗,

which establishes the law of iterated expectations: E∗i = E∗iE∗i . The proof is complete.

Proof of Lemma 6. Given h∗ = (h∗i )i∈I0 , I show that each h∗i is a projection (precisely,
h∗i = πHHi |Ω∗). First, for i = 0, the assertion follows because

h∗0 = Θ∗ = πHS |Ω∗ .

The first equality follows from the second step of the construction. The second equality
follows from the fourth step of the construction.

Second, to prove that h∗i : Ω∗ → Hi is a projection for each player i ∈ I, it suffices
to show that, for each ω∗ ∈ Ω∗ and each i ∈ I,

(h∗i (ω
∗))k = (ω∗i )

k for each k ∈ N.

Fix ω∗ ∈ Ω∗ and i ∈ I. For k = 1, the assertion follows from Expression (10) in Lemma
4 because

(h∗i (ω
∗))1 = h∗1i (ω∗).

For k ≥ 2,
(h∗i (ω

∗))k = F (πk−1) ◦ E∗i (ω∗) = (ω∗i )
k,

where the first equality follows from the definition of h∗ and the second from Expression
(11) in Lemma 4. The proof is complete.
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Proof of Lemma 7. It suffices to show that each E′i : (Ω, σ(h)) → (F (Ω), (σ(h))F ) is
measurable. To that end, it is enough to show that, for any f ∈ B(Ω, σ(h)), E′i[f ] :
(Ω, σ(h))→ (R,BR) is measurable.

Fix f ∈ B(Ω, σ(h)). It follows from Doob-Dynkin Lemma (recall Appendix A.2.1)
that there exists f ∗ ∈ B(Ω∗,D∗) such that

f = f ∗ ◦ h.

For any r ∈ R,

(E′i[f ])−1([r,∞)) = (E′i[f ∗ ◦ h])−1([r,∞))

= {ω ∈ Ω | E′i(ω)[f ∗ ◦ h] ≥ r}
= {ω ∈ Ω | Ei(ω)[f ∗ ◦ h] ≥ r}
= {ω ∈ Ω | (E∗i ◦ h)(ω) ≥ r}
= (E∗i [f ∗] ◦ h)−1([r,∞))

= h−1((E∗i [f ∗])−1([r,∞))) ∈ h−1(D∗) = σ(h),

as desired.
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