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Abstract

This paper constructs a canonical representation of players’ belief hierarchies—
players’ beliefs over some exogenously given values such as their action profiles
or payoff functions, their beliefs about their beliefs about exogenously given
values, and so on ad infinitum—in the context of non-probabilistic beliefs, in-
cluding knowledge. This paper demonstrates that the idea that any “possible”
belief hierarchy of a player can be captured as the player’s type holds true re-
gardless of whether players’ beliefs are probabilistic or qualitative. Formally,
the first main result is to construct a universal qualitative belief space as the
set of players’ belief hierarchies that can be induced by some qualitative belief
space. The second is to show that the universal qualitative belief space coin-
cides with the set of coherent belief hierarchies.

JEL Classification: C70; D83
Keywords: Interactive Belief; Qualitative Belief; Universal Belief Space; Belief
Hierarchies

∗This paper is based on part of the first chapter of my Ph.D. thesis submitted to the University
of California at Berkeley. I would especially like to thank David Ahn, William Fuchs, and Chris
Shannon for their encouragement, support, and guidance. I am also grateful to the editor, associate
editor, and two anonymous referees for their excellent suggestions, which have significantly improved
the manuscript. All remaining errors are mine.
†Department of Economics, Leavey School of Business, Santa Clara University, Santa Clara, CA

95053, USA.

1



1 Introduction

In strategic situations, game theoretic analyses often call for considerations of belief
hierarchies about players’ action profiles or payoff functions. For example, the un-
derlying idea behind iterated elimination of strictly dominated actions is that players
are rational and commonly believe their rationality: every player is rational, and
every player believes that every player is rational, every player believes that every
player believes that every player is rational, and so on. In games with incomplete
information where players face payoff uncertainty, they hold beliefs about their payoff
functions, they have beliefs about beliefs about their payoff functions, and so on.

Call a space of exogenous uncertainty such as players’ action profiles or payoff
functions the set of states of nature (or nature states). When it comes to probabilistic
beliefs, a belief hierarchy is naturally formulated as a sequence of probability measures
on the set of states of nature: the first-order belief (i.e., the first element of the
sequence) is a probability measure over the nature states, the second-order belief is a
probability measure over the nature states and the opponents’ first-order beliefs, and
so on.

A type space (Harsanyi, 1967-68) provides a self-referential representation of play-
ers’ belief hierarchies. Each player’s type is a probability measure over the nature
states and the opponents’ types. Each type induces her belief about the nature states
(i.e., the first-order belief), her belief about the nature states and the other players’
beliefs about the nature states (i.e., the second-order belief), and so on. Seminal
papers such as Armbruster and Böge (1979), Böge and Eisele (1979), Brandenburger
and Dekel (1993), Heifetz (1993), and Mertens and Zamir (1985) show that there
exists a canonical representation—a universal type space. The universal type space
is the largest type space in that it consists of all “possible” belief hierarchies.1 It is
characterized as the set of belief hierarchies that satisfies certain “coherency” con-
ditions: any two levels of beliefs in a belief hierarchy do no contradict one another
(a condition referred to as ‘coherency’ of the belief hierarchy), and the players are
commonly certain that their belief hierarchies are coherent (a condition on the set of
belief hierarchies referred to as ‘common certainty of coherency’). The existence of
the universal type space shows that, while a type induces a coherent belief hierarchy,
a coherent belief hierarchy is itself a type.

The purpose of this paper is to show that this insight extends to non-probabilistic
beliefs. To see this, consider a model of qualitative beliefs or knowledge. The first
difficulty is how to model a belief hierarchy in such settings. This difficulty arises
because the primitive of a model in the literature is typically not a type but an
information set. Players face a set of states of the world Ω. Each player has her
information set at each state ω, which consists of states ω′ that she considers possible
at ω.2 A player believes an event E (i.e., a subset of states) at a state ω if the event

1Section 2.4 formally discusses the sense in which one can speak of the universal space.
2In Aumann (1976)’s partitional model of knowledge, the information sets form a partition: the
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E includes her information set at ω (i.e., the event E contains each state that the
player considers possible at ω). Since the set of states at which a player (say, Ann)
believes an event E is an event, one can define the event that another player (say, Bob)
believes that Ann believes the event E. In sum, the first difficulty of modeling belief
hierarchies with qualitative beliefs lies in the fact that they are typically constructed
indirectly, through information sets rather than directly from types.

This paper thus extends the notion of types to qualitative beliefs. In the context
of qualitative beliefs, a type µ (of a player at a state) is a binary mapping on the
collection of events. For any event E, the player believes the event E (at the state)
if her type assigns 1 to the event: µ(E) = 1. In contrast, she does not believe the
event E if her type does not assign 1, i.e., assigns 0, to the event: µ(E) = 0. This
paper then formally defines a belief hierarchy for qualitative beliefs as a sequence of
first- and higher-order beliefs on the underlying nature states. In doing so, I consider
a general model of qualitative beliefs in a way such that one can add (resp., drop)
various properties of qualitative beliefs one by one to (resp., from) the set of types.3

The second difficulty of modeling belief hierarchies for qualitative beliefs is to de-
termine players’ depth of reasoning. On the one hand, it appears to be natural to
define players’ belief hierarchies consisting of all finite levels of beliefs: for instance,
Ann and Bob believe that they are rational (the first-order beliefs), they believe
that they believe that they are rational (the second-order beliefs), and so on for all
finite-level beliefs. For standard countably-additive probabilistic beliefs, this suffices
because each belief hierarchy in the universal type space (Brandenburger and Dekel,
1993; Heifetz and Samet, 1998b; Mertens and Zamir, 1985) consists of finite-level
beliefs that admit an extension to transfinite (but countable) levels owning to the
countable additivity (i.e., continuity) of beliefs. However, since qualitative beliefs
may not satisfy continuity, this paper considers belief hierarchies consisting of trans-
finite levels of beliefs.4 For instance, in order to define the notion of common belief,
one may need to consider an arbitrarily long sequence of mutual beliefs (i.e., everyone
believes), which necessitates belief hierarchies consisting of transfinite levels; and for
another instance, elimination of strictly dominated actions may call for an arbitrarily
long elimination process.5 With these in mind, this paper considers belief hierar-

information set at state ω consists of states ω′ such that the player cannot distinguish between ω
and ω′.

3As an analogy, in the context of quantitative beliefs, this corresponds to a framework that allows
for studying, for instance, non-additive, finitely-additive, and countably-additive beliefs in a unified
manner.

4Meier (2006) constructs the universal finitely-additive belief space, where each state in the uni-
versal space consists of logical formulas expressing players’ interactive beliefs of possibly transfinite
levels.

5For early papers that point out the role that transfinite levels of beliefs play in iterated elimi-
nation of strictly dominated actions, see, among others, Chen, Long, and Luo (2007), Dufwenberg
and Stegeman (2002), and Lipman (1994). In the context of qualitative beliefs, see Fukuda (2020,
2024b).
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chies consisting of transfinite levels, up to an arbitrary but predetermined ordinal
level. This specification allows for the belief hierarchies consisting of all finite-level
qualitative beliefs when the upper bound is the least infinite ordinal.

Formally, starting from an arbitrary number of players and without any topological
assumptions, Theorem 1 constructs the universal qualitative belief space as the set of
all “possible” belief hierarchies. Theorem 2 shows that the universal qualitative belief
space is characterized as the set of coherent belief hierarchies closed under common
certainty of coherency. Hence, this paper shows that Harsanyi (1967-68)’s type-space
approach carries over also to non-probabilistic beliefs.

The paper is structured as follows. The rest of the Introduction discusses the
related literature. Section 2 defines qualitative belief spaces. Section 3 establishes
the main results: Theorem 1 in Section 3.1 and Theorem 2 in Section 3.2. Section 4
provides concluding remarks. The proofs are relegated to Appendix A.

Related Literature

This paper is related to strands of literature that study canonical representations of
various forms of qualitative beliefs and knowledge.

First, this paper develops the “type-space” representation of a state-space model
of knowledge and qualitative beliefs and constructs a canonical representation. The
framework of this paper includes: (i) the partitional model of knowledge (e.g., Au-
mann, 1976), (ii) the non-partitional model of knowledge in which a player may lack
the negative introspection property: when the player does not know an event, she
may not know that she does not know the event (e.g., Bacharach, 1985; Branden-
burger, Dekel, and Geanakoplos, 1992; Geanakoplos, 2021; Morris, 1996; Rubinstein
and Wolinsky, 1990; Samet, 1990; Shin, 1993), and (iii) possibility correspondence
models of qualitative beliefs (e.g., Bonanno, 2008, 2015; Bonanno and Tsakas, 2018;
Hillas and Samet, 2020; Samet, 2013).6

The partitional model of knowledge is the oldest model in economics and game
theory that enables one to analyze interactive knowledge about underlying nature
states such as players’ action profiles or payoff functions. Aumann (1999, Section 10
(c)) constructs his “canonical” knowledge space with his caveat that “[t]he hierarchy
construction is so convoluted that we present it here with some diffidence. Specifically,
we have not checked carefully that the three conditions ... really are the “right”
conditions...”

The contributions of this paper regarding Aumann (1999, Section 10 (c)) are as
follows. Firstly, unlike Aumann (1999), this paper formally defines the notion of types
that represents knowledge and qualitative beliefs. Thus, unlike Aumann (1999), this
paper enables one to directly compare qualitative and probabilistic beliefs under a

6The interactive qualitative belief model is also related to the interactive preference model (e.g.,
Chen, 2010; Di Tillio, 2008; Epstein and Wang, 1996; Ganguli, Hiefetz, and Lee, 2016; Pivato, 2024)
in that players’ qualitative beliefs may be induced from their preferences.
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unified framework.7 Conceptually, the first contribution of this paper is to show that
the type-space approach succeeds in obtaining a self-referential representation of play-
ers’ infinite belief hierarchies regardless of whether players’ beliefs are probabilistic
or qualitative.

A companion paper, Fukuda (2024b), shows the existence of the universal qualita-
tive belief space irrespective of properties of beliefs, where each state of the universal
belief space consists of a collection of logical formulas expressing players’ interactive
beliefs.8 With respect to Fukuda (2024b), the contribution of this paper is to demon-
strate the versatility of the type-space approach irrespective of properties of beliefs: a
type induces a belief hierarchy, and a belief hierarchy itself can be a type, irrespective
of whether beliefs are probabilistic or qualitative.

Secondly, the construction of the universal qualitative belief space in this paper is
not an application of Aumann (1999) because contributions from the previous litera-
ture such as Fagin (1994), Fagin, Geanakoplos, et al. (1999), Fagin, J. Y. Halpern, and
Vardi (1991), Fukuda (2024b), Heifetz and Samet (1998a, 1999), and Meier (2005,
2008) have shown that, without an appropriate setup, the universal qualitative belief
space does not exist.9 In this regard, this paper provides a “right” setup in which the
“canonical” representation of Aumann (1999)’s knowledge hierarchies turns out to
be the universal knowledge space (which consists of players’ knowledge hierarchies).
In contrast, without such reformulations of the setup, as shown in the previous lit-
erature, the framework of Aumann (1999) does not admit the universal knowledge
space.

Thirdly, this paper constructs the universal belief space irrespective of properties
of beliefs and depth of reasoning. In game-theoretic applications, for instance, the
truth axiom of knowledge may not necessarily be appropriate: the truth axiom states
that if a player knows an event at a state then the event has to hold true at that
state. Thus, if Ann knows that Bob is rational at a certain state, then it has to be
the case that Bob is indeed rational at that state. However, in principle, whether Bob
is rational or not has nothing to do with whether Ann knows that Bob is rational.
This paper enables one to construct the universal belief space in a way that does
not presuppose particular properties of qualitative beliefs. Moreover, Aumann (1999)
considers knowledge hierarchies consisting only of finite-level interactive knowledge:
Ann and Bob know that they are rational, they know that they know that they are
rational, up to some arbitrarily-long finite levels. Thus, the framework of Aumann
(1999) does not allow for reasoning about common knowledge (of rationality): Ann

7Fukuda (2025) uses the “type space” representation of a belief model to study the formal sense
in which the players in the belief model are certain of the model itself.

8While Fukuda (2024b) and this paper provide different constructions, the resulting universal
qualitative belief spaces are isomorphic. Roughly speaking, given the collection of logical formulas
that express players’ interactive beliefs at a state in Fukuda (2024b)’s universal space, there exists
a unique belief hierarchy for each player in the universal space constructed in this paper, and vice
versa.

9See also Heifetz and Samet (1998b, Section 6) on this point.
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and Bob know that they are rational, they know that they know that they are rational,
and so on ad infinitum.

Second, the framework of this paper is related to a possibility model first studied
by Brandenburger (2003) and Brandenburger and Keisler (2006). The possibility
model is another type-space representation of qualitative beliefs.10 Each (possibility)
type induces a subset of the nature states and the (possibility) types of the other
players.11 Mariotti, Meier, and Piccione (2005) and Salonen (2009a,b) establish the
existence of the universal possibility model when players hold a compact set of beliefs.
This paper establishes the existence of the universal qualitative belief space without
such assumptions. Thus, the universal qualitative belief space constructed in this
paper can be used for any set of states of nature.

2 Belief Spaces

Throughout the paper, let I be a non-empty set of players. Let S be a set of states
of nature (or nature states). An element of S is regarded as a specification of the
exogenous values such as action profiles or payoff functions that are relevant to the
strategic interactions among the players. The set of states of nature S is endowed
with a sub-collection S of P(S), i.e., S ⊆ P(S), where P(·) is the power-set operation.
Each element E of S, called an event of nature, is an object about which the players
interactively reason.

2.1 Technical Preliminaries

In the literature on (probabilistic) type spaces, each player’s type in a type space
induces a belief (i.e., probability measure) over underlying states of nature S, a belief
over states of nature S and the opponents’ (first-order) beliefs over S, and so on. Thus,
each player’s type induces a belief hierarchy consisting of all finite levels of beliefs,
i.e., the belief hierarchy consists of the first-order belief, the second-order belief, the
third-order belief, and so on, along the set of natural numbers. When the underlying
set S of states of nature is endowed with a topological structure and players’ beliefs
are countably additive, each belief hierarchy that consists of all finite levels of beliefs
admits an extension to the belief hierarchy that consists of all transfinite but countable
levels of beliefs.

10Guarino and Ziegler (2022), for instance, study rationalizability solution concepts when players
have optimistic or pessimistic attitudes, using a possibility model.

11The assumption that a (possibility) type of a player induces a subset of the nature states and the
(possibility) types of the other players corresponds to the idea that each type of the player is certain
of her own type. In fact, in the context of probabilistic beliefs, papers such as Heifetz and Mongin
(2001) and Meier (2012) axiomatize the class of type spaces (in which each type of a player has
beliefs over the nature states and the types of the other players) in terms of players’ introspection.
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In contrast, since this paper studies non-probabilistic beliefs which may fail the
continuity property (and this paper does not presuppose any topological structure on
the underlying set S of states of nature), this paper explicitly considers transfinite
levels of beliefs (in Definitions 7 and 8 in Section 3.1). Thus, this paper considers a
belief hierarchy consisting of the first-order beliefs about S, the second-order beliefs,
and so on, up to a pre-determined “ordinal level κ.”12

Hence, this subsection introduces a “logical” (precisely, a set-algebraic) structure
on the collection S of events of nature (i.e., the objects of players’ beliefs) that allows
one to define interactive reasoning of transfinite levels. To that end, I introduce the
following three technical definitions.

First, I denote by κ an infinite cardinal number. By the Axiom of Choice in
set theory, the least ordinal number κ with its cardinality κ = |κ| exists. The On-
line Appendix provides the definitions of ordinal and cardinal numbers (ordinals and
cardinals, for short).

Second, for an infinite cardinal κ, I introduce the notion of a κ-complete algebra
(a κ-algebra, for short). For an underlying set X, a subset X of P(X) is a κ-algebra
if the following four conditions are met.

1. The collection X contains ∅ and X: {∅, X} ⊆ X .

2. The collection X is closed under complementation: E ∈ X implies Ec ∈ X . I
also denote the complement of E by ¬E.

3. The collection X is closed under arbitrary union of any sub-collection with
cardinality less than κ: if E ∈ X for all E ∈ E with |E| < κ, then

⋃
E :=⋃

E∈E E ∈ X .

4. The collection X is closed under arbitrary intersection of any sub-collection
with cardinality less than κ: if E ∈ X for all E ∈ E with |E| < κ, then⋂
E :=

⋂
E∈E E ∈ X .

For example, an ℵ0-algebra is an algebra of sets, because ℵ0 is the least infinite
cardinal. Similarly, an ℵ1-algebra is a σ-algebra, because ℵ1 is the least uncountable
cardinal. When the context is clear, I also refer to (S,S) as a κ-algebra.

Third, for any given infinite cardinal κ, I denote by Aκ(·) the operation of gener-
ating the smallest κ-algebra containing a given collection. Since the intersection of a
collection of κ-algebras is also a κ-algebra, for any given collection X of subsets of an
underlying set X, the smallest κ-algebra Aκ(X ) on X including X is given by:

Aκ(X ) :=
⋂
{A ∈ P(P(X)) | A is a κ-algebra with X ⊆ A}.

12In fact, for any given limit ordinal number α, there exists a strategic game such that the
unique prediction under iterated elimination of strictly dominated actions requites α + 1 rounds of
elimination (Fukuda, 2024b, Section 6.3.2). This implies that, when S is the set of action profiles
of a strategic game, the analysts would need to examine belief hierarchies (over S) that consist of
arbitrarily long transfinite levels of beliefs.
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For instance, when κ = ℵ0, Aκ(·) is the operation of generating the smallest alge-
bra including a given collection. Similarly, when κ = ℵ1, Aκ(·) is the operation of
generating the smallest σ-algebra including a given collection.

With these definitions in mind, for a given set of states of nature (S,S), I endow
it with a κ-algebraic structure. Namely, I simply assume that (S,S) is a κ-algebra
for a given κ, because my arguments hold by replacing S with Aκ(S).13

This assumption means the following: (i) any tautology in the form of S (e.g.,
E ∪ Ec) and any contradiction in the form of ∅ (e.g., E ∩ Ec) are an event of nature
(i.e., an object of players’ beliefs regarding states of nature S); (ii) if E is an event of
nature, then so is its complement Ec; and if E is an event of nature for each E ∈ E
with |E| < κ, then so are (iii) its union

⋃
E and (iv) its intersection

⋂
E .

I have two further remarks regarding a κ-algebra (S,S). First, one can accommo-
date the notion of mutual beliefs (“everybody believes”) if one assumes κ > |I|.

Second, as mentioned in Meier (2006, Remark 1), it is without loss of generality to
restrict attention to κ-algebras for infinite regular cardinals κ.14 If an infinite cardinal
κ is not regular, then any κ-algebra is indeed a κ+-algebra, where κ+ is the successor
cardinal. Now, κ+ is known to be regular (supposing the Axiom of Choice). Note
also that ℵ0 and ℵ1 are regular. As it turns out in Remark 3 in Section 3.1, if one
considers the set of belief hierarchies up to the ordinal level κ, where κ is an infinite
regular cardinal, then the set of belief hierarchies has a κ-algebraic structure.

With these in mind, henceforth, unless otherwise stated, fix a non-empty set of
players I, an infinite regular cardinal κ, and a κ-algebra (S,S) of states of nature.

2.2 Type Mappings

Throughout the subsection, fix a κ-algebra (Ω,D). Each qualitative-type (type, for
short) is a mapping µ : D → {0, 1} (i.e., µ ∈ {0, 1}D), where the belief of an event
E ∈ D is captured by µ(E) = 1. I represent each player’s beliefs by a mapping, which
I call a qualitative-type mapping (type mapping, for short), ti : Ω→ {0, 1}D with the
following interpretation: player i believes an event E at state ω if ti(ω)(E) = 1 with
ti(ω) being her type at ω. Note that player i does not believe an event E at state ω,
i.e., ti(ω)(E) < 1, if and only if (henceforth, abbreviated as iff) ti(ω)(E) = 0.

13As an analogy, in the context of probabilistic beliefs, one often starts with a topological space
(S,S). One proceeds by endowing the measurable structure by generating the smallest σ-algebra
Aℵ1(S) including S. Then, (S,Aℵ1(S)) is the measurable space of states of nature. In contrast,
this paper considers an infinite cardinal κ so that, for any collection S of subsets of S, the space
(S,Aκ(S)) is a κ-algebra.

14Under the Axiom of Choice, an infinite cardinal κ is regular if, for any set A which is a union
of less-than κ-many sets each of which has cardinality less than κ, the cardinality of A is less than
κ: if A =

⋃
j∈J Aj satisfies |J | < κ and |Aj | < κ for all j ∈ J , then |A| < κ. For the expert reader

familiar with the (equivalent) definition that an infinite cardinal κ is regular if its “cofinality” is κ,
the Online Appendix briefly discusses this definition and properties of an (infinite) regular cardinal
(see also the reference therein).
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I define a type mapping ti in the following three steps.

1. The first step defines the set M(Ω) of types (a subset of {0, 1}D) that reflects
given logical assumptions on beliefs. Put differently, just as ∆(Ω) is the set of
countably-additive probability measures over Ω, I formalize the set of legitimate
binary “measures” M(Ω) which represents beliefs on Ω.

2. The second step defines a type mapping ti as a mapping from Ω into M(Ω).

3. The third step introduces introspective properties of beliefs.

2.2.1 Logical Properties of Qualitative Beliefs

The first step defines M(Ω) as a subset of {0, 1}D based on given properties of beliefs,
as well as a κ-algebra M(D) on M(Ω).

I start by defining the following five logical properties of beliefs in terms of types.

Definition 1 (Logical Properties of Qualitative Beliefs). Fix µ ∈ {0, 1}D. Then:

1. No-Contradiction: µ(∅) = 0.

2. Consistency: µ(E) ≤ 1− µ(Ec) for all E ∈ D.

3. Monotonicity: µ(E) ≤ µ(F ) for all E,F ∈ D with E ⊆ F .

4. λ-Conjunction (where λ is an infinite (regular) cardinal with λ ≤ κ): for all

E ⊆ D with 0 < |E| < λ, min
E∈E

µ(E) ≤ µ(
⋂
E).

5. Necessitation: µ(Ω) = 1.

The logical properties of µ are analogous to the corresponding logical properties
of probabilistic beliefs. First, µ satisfies No-Contradiction if a contradiction of the
form ∅ is never believed. This is similar to the corresponding axiom of probability.

Second, Consistency means that if an event E is believed (i.e., µ(E) = 1) then
its negation is not believed (i.e., µ(Ec) = 0). Unlike the additivity of probability,
however, the converse may not hold. That is, it is possible that a player does not
believe an event E nor its negation Ec at a particular state: µ(E) + µ(Ec) = 0.

Third, Monotonicity is similar to the corresponding property of probability: if E
is believed and E implies F (in the sense of E ⊆ F ) then F is believed.

Fourth, letting λ be an infinite (regular) cardinal with λ ≤ κ, λ-Conjunction
states that, for a non-empty collection of events E with |E| < λ, if each event E ∈ E
is believed then its intersection (i.e., its conjunction)

⋂
E is believed.15 When λ = ℵ0,

15Note that λ-Conjunction does not require the converse (i.e., if
⋂
E is believed, then each event

E ∈ E is believed). Indeed, the converse is equivalent to Monotonicity, which is a conceptually
different property.
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ℵ0-Conjunction is equivalent to the property that if E and F are believed then its
intersection E ∩ F is believed. Likewise, when λ = ℵ1, ℵ1-Conjunction is equivalent
to the property that if En is believed for each n ∈ N then its intersection

⋂
n∈NEn is

believed. For instance, the notion of probability-one belief satisfies ℵ1-Conjunction.
Fifth, Necessitation states that a tautology of the form Ω is always believed,

similarly to the corresponding axiom of probability.

2.2.2 A Player’s Type Mapping

The second step defines a type mapping ti on Ω in three sub-steps. To that end, recall
that, in the case of probabilistic beliefs, a type mapping is a measurable mapping from
Ω to ∆(Ω). Thus, the first sub-step defines the set of types M(Ω), which corresponds
to ∆(Ω). The second sub-step defines a κ-algebraM(D) on M(Ω). This corresponds
to a σ-algebra on ∆(Ω) in the case of probabilistic beliefs. The third sub-step defines
a type mapping as a measurable mapping from Ω to M(Ω).

The first sub-step thus defines M(Ω), which is the set of mappings µ ∈ {0, 1}D
which satisfy a given combination of properties in Definition 1.16 For instance, if one
assumes all the properties in Definition 1, then

M(Ω) = {µ ∈ {0, 1}D | µ satisfies Definition 1}.

The second sub-step introduces a κ-algebraM(D) on M(Ω). In an analogous way
to the standard type-space approach (e.g., Heifetz and Samet, 1998b), I defineM(D)
to be the κ-algebra generated by the sets of the form

ME := {µ ∈M(Ω) | µ(E) = 1} for some E ∈ D.

Thus, the κ-algebra M(D) on M(Ω) is defined as

M(D) := Aκ({ME ∈ P(M(Ω)) | E ∈ D}).

Slightly abusing the notation, I sometimes write MD(E) := ME when the set E is
notationally convoluted (e.g., when E has a super- or sub-script).

The third sub-step then defines a type mapping as a measurable mapping ti :
(Ω,D) → (M(Ω),M(D)). The measurablity condition of ti means that the set
t−1
i (ME) (i.e., the set of states at which player i believes an event E) is an event.

Formally, ti : Ω→M(Ω) is a type mapping if, for all E ∈ D,

t−1
i (ME) = t−1

i ({µ ∈M(Ω) | µ(E) = 1}) ∈ D.

I remark that the logical properties imposed on types are inherited on the type
mapping ti in the sense that each ti(ω) ∈M(Ω) satisfies the the logical properties of

16In defining M(Ω), one can consider any possible combination of properties from Definition
1. Note, however, that some combination of properties implies other properties. For instance,
Consistency and Necessitation imply No-Contradiction.
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beliefs that are imposed on M(Ω). For each property in Definition 1, I say that the
type mapping ti satisfies the given property if ti(ω) satisfies the property for all ω ∈ Ω.
For example, ti satisfies No-Contradiction if ti(ω) satisfies it (i.e., ti(ω)(∅) = 0) for
all ω ∈ Ω.

2.2.3 Introspective Properties of Qualitative Beliefs

The third step defines introspective properties of beliefs. In the context of probabilis-
tic beliefs, the idea that each player is certain of her own beliefs is formulated as the
following two requirements: (i) if the player believes an event E with probability at
least p, then she believes, with probability one, that she believes E with probability
at least p; and (ii) if the player does not believe an event E with probability at least p,
then she believes, with probability one, that she does not believe E with probability
at least p (e.g., Heifetz and Mongin, 2001; Heifetz and Samet, 1998b; Meier, 2012;
Mertens and Zamir, 1985).

In the context of qualitative beliefs, these reduce to (i) Positive Introspection (i.e.,
if a player believes an event E, then she believes that she believes E); and (ii) Negative
Introspection (i.e., if a player does not believe an event E, then she believes that she
does not believe E).

Since I study qualitative beliefs, I also consider the case in which qualitative
beliefs satisfy the axiom of knowledge. That is, knowledge satisfies Truth Axiom: if
a player knows an event E at a state, then E has to hold true at that state. Truth
Axiom distinguishes knowledge from qualitative beliefs in the sense that the player
can believe an event E at a state at which the event E does not hold true.

I also consider a condition—Kripke Property—under which qualitative beliefs are
induced from a possibility correspondence. The possibility correspondence is a map-
ping bi : Ω→ P(Ω) such that player i believes an event E at a state ω iff

bi(ω) ⊆ E

in the sense that E is implied by the set of states bi(ω) that player i considers possible
at ω. The set bi(ω) corresponds to the intersection of the events E that player i
believes at ω.

Only for ease of exposition, I simply refer to these four properties as introspec-
tive properties as opposed to logical properties. Below, I formalize the introspective
properties of a type mapping.

Definition 2 (Introspective Properties of Qualitative Beliefs). Let ti : (Ω,D) →
(M(Ω),M(D)) be a type mapping. Then:

1. Truth Axiom: for any (ω,E) ∈ Ω×D, if ti(ω)(E) = 1 then ω ∈ E.

2. Positive Introspection: for any (ω,E) ∈ Ω×D, if ti(ω)(E) = 1, then

ti(ω)({ω′ ∈ Ω | ti(ω′)(E) = 1}︸ ︷︷ ︸
=t−1
i (ME)

) = 1.

11



3. Negative Introspection: for any (ω,E) ∈ Ω×D, if ti(ω)(E) = 0, then

ti(ω)({ω′ ∈ Ω | ti(ω′)(E) = 0}︸ ︷︷ ︸
=¬t−1

i (ME)

) = 1.

4. Kripke Property: for any (ω,E) ∈ Ω×D, ti(ω)(E) = 1 if (and only if)

bti(ω) ⊆ E, where bti(ω) :=
⋂
{F ∈ D | ti(ω)(F ) = 1}.

Henceforth, fix any possible combination of logical and introspective properties of
beliefs.17 For any given combination of logical and introspective properties of beliefs,
I construct the universal belief space. Section 2.3 defines belief spaces. Section 2.4
defines the universal belief space.

2.3 Belief Spaces

Section 2.3.1 defines a model of players’ beliefs, a belief space. I represent players’
interactive beliefs regarding (S,S) on a “sample space” (Ω,D) by type mappings.
Section 2.3.2 discusses the definition of a belief space. Section 2.3.3 provides examples.

2.3.1 The Definition of a Belief Space

Definition 3 (Belief Space). A κ-belief space of I on (S,S) is a tuple
−→
Ω := 〈(Ω,D), (ti)i∈I ,Θ〉

with the following three properties.

1. (Ω,D) is a κ-algebra. Ω is the set of states of the world. Each E ∈ D is an
event (of the world).

2. For each i ∈ I, ti : (Ω,D) → (M(Ω),M(D)) is player i’s type mapping that
satisfies the given logical and introspective properties of beliefs. It satisfies the
measurability condition:

t−1
i (ME) = {ω ∈ Ω | ti(ω)(E) = 1} ∈ D for each E ∈ D. (1)

Player i ∈ I believes an event E ∈ D at a state ω ∈ Ω if ti(ω)(E) = 1.

3. Θ : (Ω,D)→ (S,S) is a measurable mapping: Θ−1(E) ∈ D for any E ∈ S.

So far, I have defined belief spaces (Definition 3) in addition to the properties of
beliefs (Definitions 1 and 2). The main result of this paper is to construct the universal
belief space for any (non-empty) set I of players, any infinite (regular) cardinal κ,

17As discussed in Footnote 16, note that some properties of beliefs may imply others. For example,
Truth Axiom implies No-Contradiction and Consistency. Also, Negative Introspection together with
Truth Axiom imply Positive Introspection (e.g., Aumann, 1999, p. 270).

12



any κ-algebra (S,S) of nature states, and any combination of properties of beliefs
given in Definitions 1 and 2. Given such inputs (i.e., I, κ, (S,S), and the properties

of beliefs), one can define the class of κ-belief spaces
−→
Ω of I on (S,S) satisfying the

given properties of beliefs. Since such inputs are fixed, I simply refer to
−→
Ω as a belief

space.

2.3.2 Remarks on the Definition

Five remarks on Definition 3 are in order. First, while any subset of underlying states
of the world is deemed to be an event in standard partitional knowledge models (i.e.,
D = P(Ω)), my framework is more general. As in Fukuda (2024b), this specification
(of a κ-algebra) leads to the existence of the universal belief space.

Second, players’ beliefs are represented through their type mappings instead of
their belief operators.

Remark 1 (Belief Operator). Player i’s belief operator Bi : D → D associates, with
each event E ∈ D, the event that (i.e., the set of states at which) player i believes E.
If player i’s type mapping ti is given, then one can define

Bti(E) := {ω ∈ Ω | ti(ω)(E) = 1} for each E ∈ D,

where Bti(E) is an event by Condition (1) of Definition 3. Conversely, if Bi is given,
then one can define tBi as

tBi(ω)(E) = 1 if ω ∈ Bi(E).

By definition, ti = tBti and Bi = BtBi
. Appendix A.1 shows that the properties

of beliefs given in Definitions 1 and 2 are represented by well-known properties of
the belief operator Bi. Thus, any belief operator on a κ-algebra can be equivalently
represented by the corresponding type mapping.18

This means that notions derived from player i’s belief operator Bi such as believing
whether JBi(E) := Bi(E) ∪ Bi(E

c) (i.e., player i believes whether E holds if she
believes E or she believes Ec) can also be expressed from her type mapping tBi : player
i believes whether E holds at ω (i.e., ω ∈ JBi(E)) iff max(tBi(ω)(E), tBi(ω)(Ec)) = 1.

18As a remark, while this paper focuses on qualitative beliefs, the framework can also accommodate
various forms of probabilistic beliefs defined on a κ-algebra as long as players’ beliefs are represented
through p-belief operators (Monderer and Samet, 1989): a player p-believes an event at a state if
she believes the event at the state with probability at least p. The player possesses a collection
of type mappings for each p ∈ [0, 1], and the type (that corresponds to p) assigns the value of 1
when the player p-believes the event. Examples of various forms of probabilistic beliefs include, but
are not limited to, countably-additive beliefs (Samet, 2000), finitely-additive beliefs (Meier, 2006),
non-additive beliefs, and conditional beliefs (e.g., Di Tillio, J. Halpern, and Samet, 2014; Guarino,
2017, 2025; Tsakas, 2014a).
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Third, within a belief space, the assumption that κ is an infinite cardinal implies
that the players are able to interactively reason about their beliefs of any finite order
without any bound. To see this, each player i’s belief about an event E ∈ S of

nature is represented as an event Bti(Θ
−1(E)) ∈ D within the belief space

−→
Ω . Player

i’s belief about j’s belief about the event E of nature is represented as an event
BtiBtj(Θ

−1(E)) ∈ D. For any finite k ∈ N, player i1’s belief about player i2’s belief
... about player ik’s belief about the event E of nature is represented as

Bti1
Bti2
· · ·Btik

(Θ−1(E)) ∈ D.

Thus, this paper differs from the literature that aims at capturing “bounded-depth
reasoning” within a type space (e.g., Heifetz and Kets, 2018; Kets, 2017; Strzalecki,
2014), where player i has some limitations on reasoning above some level k ∈ N.

Fourth, this framework can nest various classes of (qualitative) belief spaces in
the previous literature.

Remark 2 (Various Belief Models in the Literature). 1. The class of κ-belief spaces
satisfying the properties in Definitions 1 and 2 is the class of partitional knowl-
edge spaces (e.g., Aumann, 1976) defined on a κ-algebra.

2. If one drops Negative Introspection, then the class of κ-belief spaces satisfying
possibly all but Negative Introspection is the class of non-partitional knowledge
spaces (e.g., Bacharach, 1985; Brandenburger, Dekel, and Geanakoplos, 1992;
Geanakoplos, 2021; Morris, 1996; Rubinstein and Wolinsky, 1990; Samet, 1990;
Shin, 1993) defined on a κ-algebra.

3. If one drops Truth Axiom from Definitions 1 and 2, then the class of κ-belief
spaces satisfying possibly all but Truth Axiom is the class of qualitative belief
spaces (e.g., Bonanno, 2008, 2015; Bonanno and Tsakas, 2018; Hillas and Samet,
2020; Samet, 2013) defined on a κ-algebra.

Fifth, Tsakas (2014b,c) studies rational beliefs, which are Borel probability mea-
sures that assign a rational probability to every Borel event. The notions of rational
beliefs and qualitative beliefs are not generalizations of one another. Consider the
special case of “1-rational beliefs,” i.e., consider the set ∆1(Ω) of probability measures
on (Ω,D) which assign binary values (i.e., 0 or 1). Then, each element µ ∈ ∆1(Ω)
is assumed to satisfy the logical properties of beliefs in Definition 1. Especially,
since µ is countably additive, it satisfies ℵ1-Conjunction, which can be restated as
follows: if µ(En) = 1 for all n ∈ N, then µ(

⋂
n∈NEn) = 1.19 In contrast, in this

paper, one can define the set M(Ω) of qualitative beliefs on (Ω,D) in a way such
that some µ ∈ M(Ω) may violate some properties in Definition 1 (e.g., one can con-
sider “1-rational finitely-additive beliefs”). Also, Truth Axiom or Kripke Property

19In fact, given the lack of this continuity property, Section 3.1 considers belief hierarchies of
transfinite levels. This also differs from the definition of belief hierarchies in Tsakas (2014b,c).

14



s1 s2

s1 2, 2 0, 3
s2 3, 0 1, 1

Table 1: The Set of States of Nature S := {s1, s2}2.

in Definition 2 may be incompatible with probabilistic beliefs (e.g., Fukuda, 2024a;
Monderer and Samet, 1989).

2.3.3 Examples

I provide two simple examples of a belief space, where S := {s1, s2}2 is the set of
action profiles for Prisoners’ Dilemma as depicted by Table 1. Thus, s1 corresponds
to cooperation, while s2 defection. Two players, I := {1, 2}, are reasoning about any
subsets of S: S := P(S). I consider the class of κ-belief spaces of I on (S,S), where
κ is an infinite (regular) cardinal and beliefs are assumed to satisfy the properties in
Definitions 1 and 2. To anticipate the definition of belief hierarchies in Section 3.1, I
briefly outline how a given belief space induces belief hierarchies over S.

Example 1. First, let Ω := S and D := S, i.e., the set of states of the world is given
by the set of action profiles, and any subset of S is an event (of the world) about
which the players hold beliefs. The space (Ω,D) is a κ-algebra.

Second, before defining the players’ type mappings, let Θ : (Ω,D) → (S,S) be
the identity map. By definition, Θ is measurable. For any ω = (ω1, ω2) ∈ Ω, denote
Θ(ω) = (Θ1(ω1),Θ2(ω2)). Thus, (Θ1(ω1),Θ2(ω2)) = (ω1, ω2).

Third, suppose that, when each player i takes action si ∈ {s1, s2} (i.e., at state
ω = (ω1, ω2) at which Θi(ωi) = si), she believes that her action is si. Formally, each
player i’s type mapping ti is given as follows: for each (ω, F ) ∈ Ω×D,

ti(ω)(F ) :=

{
1 if {ω̃ ∈ Ω | ω̃i = ωi} ⊆ F

0 otherwise
.

The belief space
−→
Ω reduces to a standard partitional knowledge model, where each

player’s partition cell at ω ∈ Ω is given by {ω̃ ∈ Ω | ω̃i = ωi}: at ω, player i considers
any ω̃ with ω̃i = ωi possible. Thus, it can be seen that ti satisfies the properties in
Definitions 1 and 2.

Since Θ : (Ω,D)→ (S,S) is measurable, Θ−1 associates, with each event of nature
E ∈ S, the corresponding event Θ−1(E) ∈ D. Thus, each player i’s first-order beliefs
about S at state ω ∈ Ω are given by

h1
i (ω)(·) := ti(ω)(Θ−1(·)) ∈ H1

i := M(S).
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By the definition of ti(ω), when each player i takes action si ∈ {s1, s2}, she believes
that she takes si (and vice versa). Using player i’s belief operator, one can express it
as:

{ω ∈ Ω | Θi(ωi) = si} = Bti({ω ∈ Ω | Θi(ωi) = si}).
Next, I consider each player i’s second-order beliefs about the nature states S and

the first-order beliefs of the players M(S)I (i.e., each player i’s second-order beliefs
about the set of the players’ belief hierarchies of order up to 1). Let

H1 := S ×
∏
i∈I

H1
i , i.e., H1 = S ×M(S)I

be the set of the players’ belief hierarchies of order up to 1. Letting h1 := (Θ, (h1
i )i∈I) :

Ω→ H1 be the mapping that associates, with each state, the players’ belief hierarchies
of order up to 1 at that state, player i’s second-order beliefs about H1 at state ω are
given by

ti(ω)((h1)−1(·)) ∈M(H1).

Using the players’ belief operators, I represent player j’s belief about player i’s
belief about i’s own action (where j 6= i). Namely, player j does not believe that
player i takes si because

∅ = Btj Bti({ω ∈ Ω | Θi(ωi) = si})︸ ︷︷ ︸
={ω∈Ω|Θi(ωi)=si}

.

In this way, the belief space
−→
Ω induces each player i’s (first-order) beliefs about the

states of nature S, her (second-order) beliefs about the states of nature S and the
(first-order) beliefs of the players about S, and so on. Section 3.1 defines the set of
belief hierarchies, and constructs the universal belief space that contains all possible
belief hierarchies (the formal definition of the universal belief space is given in Section
2.4).

Example 2. First, let Ω := {(s2, s2)} and D := P(Ω), i.e., the set of states of the
world is given by the singleton action profile (s2, s2) of defection, and D = {∅,Ω} is
a “degenerate” κ-algebra.

Second, before defining the players’ type mappings, let Θ : (Ω,D) → (S,S) be
the inclusion mapping: Θ(s2, s2) = (s2, s2). By definition, Θ is measurable: for each
E ∈ S,

Θ−1(E) =

{
∅ if (s2, s2) 6∈ E
Ω if (s2, s2) ∈ E

.

Third, each player i’s type mapping ti is given as follows: for each (ω, F ) ∈ Ω×D,

ti(ω)(F ) :=

{
1 if F = Ω

0 if F = ∅
.
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The belief space
−→
Ω reduces to a standard partitional knowledge model, where each

player’s partition is the degenerate partition {Ω}. Thus, it can be seen that ti satisfies
the properties in Definitions 1 and 2.

At the state ω = (s2, s2) at which both players take s2, every player believes that
both take s2. This is because, for any E ∈ S with (s2, s2) ∈ E,

h1
i (ω)︸ ︷︷ ︸
∈M(S)

(E) := ti(ω)(Θ−1(E)︸ ︷︷ ︸
=Ω

) = 1.

In terms of the belief operator,

Bt1({ω ∈ Ω | ω1 = ω2 = s2}︸ ︷︷ ︸
=Ω

) = Bt2({ω ∈ Ω | ω1 = ω2 = s2}︸ ︷︷ ︸
=Ω

) = Ω.

Thus, at ω = (s2, s2), every player believes that both players take s2, every player
believes that every player believes that both players take s2, and so forth ad infinitum.
The belief spaces in Examples 1 and 2 induce different belief hierarchies over S. The
universal belief space constructed in Section 3.1 contains belief hierarchies induced
by these belief spaces, as it contains all possible belief hierarchies.

2.4 The Universal Belief Space

In this subsection, I define the universal belief space as a belief space to which every
belief space is uniquely mapped in a belief-preserving manner. I start by formalizing
the notion of a mapping that preserves states of nature and players’ beliefs, i.e., the
notion of a belief morphism between belief spaces.

Definition 4 (Belief Morphism). Let
−→
Ω := 〈(Ω,D), (ti)i∈I ,Θ〉 and

−→
Ω′ := 〈(Ω′,D′), (t′i)i∈I ,Θ′〉

be belief spaces. A belief morphism ϕ :
−→
Ω →

−→
Ω′ is a measurable mapping ϕ : (Ω,D)→

(Ω′,D′) with the following two additional properties.

1. For all ω ∈ Ω, Θ′(ϕ(ω)) = Θ(ω).

2. For each i ∈ I, ω ∈ Ω, and E ′ ∈ D′, t′i(ϕ(ω))(E ′) = ti(ω)(ϕ−1(E ′)).

Condition (1) requires that the same state of nature prevail for two associated
belief spaces. Condition (2) requires that players’ beliefs be preserved from one space
to another in the following sense: for any event E ′ ∈ D′, player i believes E ′ at ϕ(ω)
iff she believes ϕ−1(E ′) at ω.

Two remarks are in order. First, for any given belief space
−→
Ω , the identity map

idΩ : Ω→ Ω is a belief morphism from
−→
Ω into itself.

Second, I call a belief morphism ϕ :
−→
Ω →

−→
Ω′ a belief isomorphism, if ϕ is bijective

and its inverse ϕ−1 is a belief morphism. If this is the case, then the belief spaces
−→
Ω

and
−→
Ω′ are isomorphic.
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Belief spaces satisfying the
properties in Definitions 1 and 2

The universal space

Belief spaces satisfying
at least all but Truth Axiom

The universal space

Figure 1: The Universal Belief Space within a Class of Belief Spaces.

Now, I define the universal belief space. I formalize below the idea that the
universal belief space “contains” all belief spaces in the sense that any belief space
can be mapped uniquely to the universal space by a belief morphism.

Definition 5 (Universal Belief Space). A belief space
−→
Ω∗ is universal if, for any belief

space
−→
Ω , there is a unique belief morphism ϕ :

−→
Ω →

−→
Ω∗.

This definition follows that of Heifetz and Samet (1998b) and, more recently, that
of Meier and Perea (2025). In the language of category theory, the universal belief
space is a terminal object in the category of belief spaces. As it is well-known in
category theory, a terminal object is unique up to isomorphism. Thus, the universal
belief space is unique up to belief isomorphism. Thus, one can indeed speak of the
universal belief space.

Figure 1 illustrates Definition 5. The left panel depicts the class of (κ-)belief
spaces where beliefs satisfy the properties in Definition 1 and 2 (i.e., the class of
partitional knowledge spaces defined on a κ-algebra) and its universal space to be
constructed. The belief spaces defined in Examples 1 and 2 belong to this class of
belief spaces. The right panel depicts the class of (κ-)belief spaces where beliefs do not
necessarily satisfy Truth Axiom (otherwise all the other properties are still imposed)
and the universal space within the class. Since the underlying assumptions on beliefs
are relaxed, the class of belief spaces is enlarged. As the figure illustrates, fixing κ, I,
and (S,S), for any given combination of properties of beliefs, Theorem 1 in Section
3.1 constructs the universal belief space which may vary depending on the properties
of beliefs.

3 Main Result

This section constructs the universal belief space as the set of all possible belief
hierarchies. I follow Heifetz and Samet (1998b, Section 5)’s hierarchical approach to
establishing the universal type space. Since I extensively use product κ-algebras, I
formally define the product κ-algebra of a collection of κ-algebras.
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Definition 6 (Product κ-algebra). Let (Ωj,Dj) be a κ-algebra for each j ∈ J , where
J is a non-empty index set. Letting πj :

∏
j∈J Ωj → Ωj be the projection for each

j ∈ J , the product κ-algebra
∏

j∈J Dj on the product space
∏

j∈J Ωj is defined as

∏
j∈J

Dj := Aκ

(⋃
j∈J

{π−1
j (E) | E ∈ Dj}

)
.

As usual, if D = Dj for all j ∈ J , then I denote DJ :=
∏

j∈J Dj. I also define finite
products such as D1 ×D2 =

∏
j∈{1,2}Dj in the usual manner.

3.1 A Hierarchical Construction of the Universal Belief Space

I construct the universal belief space in four steps. The first step defines the hierar-
chies space, the space of the players’ belief hierarchies over (S,S) up to the ordinal
level κ.

Definition 7 (Hierarchies Space). I define the sequence of κ-algebras (Hα,Hα) for
ordinals α with 0 ≤ α ≤ κ as follows.

1. For α = 0, let (H0,H0) := (S,S).

2. For any ordinal α with 0 < α < κ, let

(Hα,Hα) :=

(
S ×

∏
β<α

M(Hβ)I ,S ×
∏
β<α

M(Hβ)I

)
. (2)

3. For α = κ, define the hierarchies space (Hκ,Hκ) as:

Hκ := S ×
∏
α<κ

M(Hα)I and (3)

Hκ := {(πκ,α)−1(Eα) | Eα ∈ Hα for some α < κ}, (4)

where, for any ordinals (α, β) with 0 ≤ β ≤ α ≤ κ, denote by

πα,β : Hα → Hβ

the projection.

For each ordinal α ≤ κ, call a measurable space (Hα,Hα) the space of the players’
belief hierarchies of order up to α. When α = κ, I omit the superscript κ from Hκ,
Hκ, and πκ,α. Thus, I denote

(H,H) := (Hκ,Hκ).
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I remark on Expression (2) when α is a successor ordinal α = β + 1. Then, the
space (Hα,Hα) of the players’ belief hierarchies of order up to α consists of the space
(Hβ,Hβ) of the players’ belief hierarchies of order up to β and their beliefs over
(Hβ,Hβ):

(Hα,Hα) = (Hβ ×M(Hβ)I ,Hβ ×M(Hβ)I)

=

(
S ×

∏
γ<α

M(Hγ)I ,S ×
∏
γ<α

M(Hγ)I

)
,

where the right-most side coincides with Expression (2).
With this in mind, I discuss Definition 7. Starting with (H0,H0) = (S,S), the

space
(H1,H1) = (S ×M(S)I ,S ×M(S)I)

of the players’ belief hierarchies of order up to 1 consists of their “0-th order beliefs”
(i.e., states of nature) S and their first-order beliefs about S, i.e., M(S)I , endowed
with the corresponding κ-algebra. When α = 2, the space

(H2,H2) = (S ×M( S︸︷︷︸
=H0

)I ×M(S ×M(S)I︸ ︷︷ ︸
=H1

)I ,S ×M( S︸︷︷︸
=H0

)I ×M(S ×M(S)I︸ ︷︷ ︸
=H1

)I)

of the players’ belief hierarchies of order up to 2 consists of their “0-th order beliefs,”
their first-order beliefs about S, and their second-order beliefs about the nature states
S and their own first-order beliefs S ×M(S)I , endowed with the corresponding κ-
algebra. In this way, (Hα,Hα) is defined for any finite ordinal α ∈ N ∪ {0}.

If κ is the least infinite cardinal (i.e., κ corresponds to the least infinite ordinal,
that is, the set of non-negative integers), then the hierarchy space Hκ defined by
Expression (3) consists of the set S of states of nature (the “0-th order beliefs”) and
the set M(Hα)I of the players’ beliefs over Hα (i.e., “(α + 1)-th order beliefs”) for
all α ∈ N ∪ {0}. Also, the hierarchy space Hκ is endowed with a κ-algebra (i.e., an
algebra) Hκ defined by Expression (4).20

More generally, when κ is an infinite regular cardinal, the hierarchy space Hκ

defined by Expression (3) consists of the set S of states of nature (the “0-th order
beliefs”) and the set M(Hα)I of the players’ beliefs over Hα for all ordinals α less
than κ, endowed with Hκ defined by Expression (4).

A key mathematical observation behind Definition 7 is that, when one defines the
players’ belief hierarchies up to the ordinal level κ, the collection Hκ on Hκ defined
by Expression (4) forms a κ-algebra. Formally:

Remark 3 (Hierarchies Space). The hierarchies space (H,H) is a κ-algebra.

20Thus, the hierarchy space (Hκ,Hκ) defined by Expressions (3) and (4) is consistent with Ex-
pression (2) in the following sense: if we let α = κ, then the hierarchy space (Hκ,Hκ) coincides with
the space (Hα,Hα) defined by Expression (2) (with α = κ).
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To examine Remark 3, if we let α = κ in Expression (2), then the collection Hκ

is defined as the product κ-algebra on Hκ:

Aκ({(πα)−1(Eα) | Eα ∈ Hα for some α < κ}).

Thus, Remark 3 states that, if one defines the players’ belief hierarchies up to the
ordinal level κ, the lower-order belief hierarchies (Hα)α<κ determine the κ-algebra
Hκ, i.e., the operation of Aκ is not needed.

Instead, consider the case of probabilistic beliefs. In the framework of this paper,
this corresponds to the case where κ = ℵ1, as the domain of each belief space is
a σ-algebra. However, in the literature on (probabilistic) type spaces, one usually
considers the sequence (Hα,Hα)α∈ℵ0 of finite-order beliefs, where ℵ0 = N ∪ {0}.21

Then, one defines the σ-algebra (i.e., the ℵ1-algebra) Aℵ1(Hℵ0) from an ℵ0-algebra
(i.e., an algebra)

Hℵ0 = {(πℵ0,α)−1(Eα) | Eα ∈ Hα for some α < ℵ0}.

Any probability measure on an algebra Hℵ0 then admits a unique extension to the σ-
algebra Aℵ1(Hℵ0) because the probability measure is countably additive (i.e., satisfies
the continuity property).

Going back to the context of this paper, since qualitative beliefs may not satisfy
such continuity property, I consider instead the transfinite levels of beliefs (Hα,Hα)α<ℵ1
up to the ordinal level of κ = ℵ1 to obtain a σ-algebra (i.e., an ℵ1-algebra) (H,H) =

(Hℵ1 ,Hℵ1). I will use this insight (in Lemma 2 below) to define each player’s type
mapping on the universal space.

I often identify the hierarchies space H with the product of the nature states S
and the players’ hierarchies spaces. For each i ∈ I and α with 1 ≤ α ≤ κ, let

Hα
i :=

∏
β<α

M(Hβ).

Then, for any ordinal α with 1 ≤ α ≤ κ, one can identify

Hα = S ×
∏
i∈I

Hα
i . (5)

For all ordinals (α, β) with 1 ≤ β ≤ α ≤ κ, denote by

πα,βi : Hα
i → Hβ

i

the projection. Again, I omit the superscript κ when α = κ.

21While each Hα (with α ≥ 1) is defined from the set ∆(S) of probability measures over S instead
of M(S), for ease of exposition, I use the same notation Hα.
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The second step defines, for any given belief space
−→
Ω , a map h : Ω → H that

associates, with each state ω ∈ Ω, the players’ belief hierarchies h(ω). Call h(ω) the
(players’) belief hierarchies at ω and h the hierarchy map. Since I establish results
on belief hierarchies by induction on the formation of h, I inductively define h from
hα, depending on whether α is a successor ordinal or a limit ordinal.

Definition 8 (Belief Hierarchies). Given a belief space
−→
Ω = 〈(Ω,D), (ti)i∈I ,Θ〉, I

inductively define the hierarchy map h : Ω→ H as follows.

1. For α = 0, let h0 : Ω→ H0 by h0 := Θ.

2. For a successor ordinal α = β + 1, define hα : Ω→ Hα by

hα(ω) := (hβ(ω), t(ω) ◦ (hβ)−1)

:= (hβ(ω), (ti(ω) ◦ (hβ)−1)i∈I) for all ω ∈ Ω. (6)

3. For any (non-zero) limit ordinal α with α ≤ κ, let hα : Ω → Hα be the unique
mapping which satisfies

hβ = πα,β ◦ hα for all β < α. (7)

I omit the superscript κ when α = κ, i.e., let h = hκ. Call each h(ω) the (players’)
belief hierarchies at ω.

In Definition 8, if α = 0, then h0(ω) = Θ(ω) ∈ S is the state of nature that
corresponds to the state of the world ω. When α = 1,

h1(ω) = (h0(ω)︸ ︷︷ ︸
∈S

, (ti(ω) ◦ (h0)−1︸ ︷︷ ︸
∈M(S)

)i∈I) ∈ H1

consists of the state of nature and each player’s first-order beliefs about S (i.e., the
players’ belief hierarchies of order up to 1) at ω. When α = 2, since one can identify
H2 = H1 ×M(H1)I ,

h2(ω) = (h1(ω)︸ ︷︷ ︸
∈H1

, (ti(ω) ◦ (h1)−1︸ ︷︷ ︸
∈M(H1)

)i∈I) ∈ H2.

If α = β + 1 is a successor ordinal, then, since one can identify Hα = Hβ ×M(Hβ)I ,

hα(ω) = (hβ(ω)︸ ︷︷ ︸
∈Hβ

, (ti(ω) ◦ (hβ)−1︸ ︷︷ ︸
∈M(Hβ)

)i∈I) ∈ Hα

as in Expression (6). When α is a limit ordinal (including the case in which α = κ),
Definition 8 defines hα(ω) as the “limit” of (hβ(ω))β<α in the sense of Expression (7).

In light of Equation (5), Remark 4 below shows that the players’ belief hierarchies
h(ω) ∈ H at ω can be decomposed into the state of nature and each player’s belief
hierarchy:

(h0(ω), (hi(ω))i∈I) ∈ S ×
∏
i∈I

Hi.
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Remark 4 (Belief Hierarchy of a Player). For each ordinal α with 1 ≤ α ≤ κ, I can
identify each hα ∈ Hα in Definition 8 with hα = (h0, (hαi )i∈I) as follows.

1. Let h1
i (ω) := ti(ω) ◦ (h0)−1 for all ω ∈ Ω.

2. For a successor ordinal α = β + 1 with β ≥ 1, define hαi : Ω→ Hα
i by

hαi (ω) := (hβi (ω), ti(ω) ◦ (hβ)−1) for all ω ∈ Ω.

3. For a limit ordinal α, let hαi : Ω→ Hα
i be the unique mapping which satisfies

hβi = πα,βi ◦ hαi for all β < α.

Call hi(ω) player i’s belief hierarchy at ω.

Now, I define an underlying set Ω∗ of a candidate universal belief space as the set
of all possible belief hierarchies:

Ω∗ := {ω∗ ∈ H | ω∗ = h(ω) for some belief space
−→
Ω and a state ω ∈ Ω}. (8)

It can be seen that Ω∗ 6= ∅ because there is a belief space
−→
Ω with Ω 6= ∅.22

Since Ω∗ is a subset of H, I can induce a κ-algebra D∗ on Ω∗ from H by

D∗ = {(πα|Ω∗)−1(Eα) ∈ P(Ω∗) | Eα ∈ Hα for some α < κ}, (9)

where πα|Ω∗ : Ω∗ → Hα is the restriction of πα : H → Hα on Ω∗ for each α < κ. Note
that, since (πα|Ω∗)−1(·) = (πα)−1(·) ∩ Ω∗, one has:

D∗ = {E ∩ Ω∗ ∈ P(Ω∗) | E ∈ H}.

From now on, for any belief space
−→
Ω , I identify the hierarchy map h as

h : Ω→ Ω∗.

I denote the hierarchy map by
h−→

Ω
: Ω→ Ω∗

when I stress its domain. I establish that the hierarchy map h : (Ω,D)→ (Ω∗,D∗) is
measurable and that a belief morphism preserves belief hierarchies.

Lemma 1 (Belief Morphism Preserves Belief Hierarchies). 1. For any belief space
−→
Ω , the hierarchy map h−→

Ω
: (Ω,D)→ (Ω∗,D∗) is measurable.

22Since S 6= ∅, take s ∈ S, and one can define a belief space
−→
{s} which satisfies Definitions 1 and

2 as in Example 2.
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2. If ϕ :
−→
Ω →

−→
Ω′ is a belief morphism, then h−→

Ω
= h−→

Ω′
◦ ϕ.

A belief space
−→
Ω is non-redundant if its hierarchy map h is injective. If a belief

space
−→
Ω is non-redundant, then (Θ, (ti)i∈I) : Ω→ S×M(Ω)I is injective. This follows

because, if (Θ, (ti)i∈I)(ω) = (Θ, (ti)i∈I)(ω
′) for some ω, ω′ ∈ Ω, then h(ω) = h(ω′) and

thus ω = ω′.
The third step defines the mapping Θ∗ : Ω∗ → S and the players’ type mappings

(t∗i )i∈I . I define Θ∗ : Ω∗ → S by the projection

Θ∗ = π0|Ω∗ .

By construction, Θ∗ : (Ω∗,D∗)→ (S,S) is measurable. Moreover, for any belief space
−→
Ω ,

Θ(ω) = π0(h(ω)) = Θ∗(h(ω)) for all ω ∈ Ω.

Hence, Θ∗ preserves states of nature.
Next, I define the players’ type mappings (t∗i )i∈I .

Lemma 2 (Players’ Beliefs on Candidate Universal Space). For each i ∈ I and
ω∗ ∈ Ω∗, let

t∗i (ω
∗)((πα|Ω∗)−1(Eα)) := (ω∗)α+1

i (Eα) for each α < κ and Eα ∈ Hα, (10)

where note that (ω∗)α+1
i ∈M(Hα).23 Then:

1. t∗i : (Ω∗,D∗)→ (M(Ω∗),M(D∗)) is a well-defined measurable mapping.

2. t∗i inherits all the given properties of beliefs.

3. Fix a belief space
−→
Ω . Then, for any ω ∈ Ω and E∗ ∈ D∗,

t∗i (h(ω))(E∗) = ti(ω)(h−1(E∗)). (11)

For the left-hand side of Expression (10), Remark 3 allows one to define t∗i (ω
∗) on

D∗ as H itself is a κ-algebra on H (and similarly for the left-hand side of Expression
(11)). The first part of the lemma shows that the right-hand side of Expression (10)
is well-defined, i.e., t∗i (ω

∗)(E∗) does not depend on a particular choice of α < κ with
E∗ = (πα|Ω∗)−1(Eα).

So far, the three steps jointly imply the following: (i) the space
−→
Ω∗ = 〈(Ω∗,D∗), (t∗i )i∈I ,Θ∗〉

is a belief space with Ω∗ 6= ∅; and (ii) for any given belief space
−→
Ω = 〈(Ω,D), (ti)i∈I ,Θ〉,

the hierarchy map h : Ω→ Ω∗ is a belief morphism.
The fourth step shows that the hierarchy map is a unique belief morphism from

a given belief space into the belief space
−→
Ω∗. To that end, I show that the hierarchy

map from
−→
Ω∗ into itself is the identity map.

23Denoting ω∗ = (s, (µi)i∈I) ∈ Ω∗ and µi = (µαi )0≤α<κ with µαi ∈M(Hα), one has (ω∗)α+1
i = µαi .
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Lemma 3 (Hierarchy Map of Candidate Universal Space). The hierarchy map h∗ :
−→
Ω∗ →

−→
Ω∗ is the identity map on Ω∗.

Now, I establish the main theorem:

Theorem 1 (
−→
Ω∗ is Universal). The belief space

−→
Ω∗ = 〈(Ω∗,D∗), (t∗i )i∈I ,Θ∗〉 is univer-

sal. The mapping (Θ∗, (t∗i )i∈I) : Ω∗ → Ω∗∗ is bijective, where

Ω∗∗ := {(s, (µi)i∈I) ∈ S ×M(Ω∗)I | there are a belief space
−→
Ω and ω ∈ Ω

such that (s, (µi)i∈I) = (Θ(ω), (ti(ω) ◦ h−1)i∈I)}.

Proof of Theorem 1. First, the previous steps have shown that
−→
Ω∗ = 〈(Ω∗,D∗), (t∗i )i∈I ,Θ∗〉

is a belief space. To show that it is universal, observe that if h, ϕ :
−→
Ω →

−→
Ω∗ are a

belief morphism, then
h = h−→

Ω∗
◦ ϕ = ϕ,

where the first equality follows from Lemma 1 and the second from Lemma 3. Thus,

the hierarchy map h is a unique belief morphism from the given belief space
−→
Ω to

−→
Ω∗.

Second, since
−→
Ω∗ is non-redundant by Lemma 3, the mapping (Θ∗, (t∗i )i∈I) : Ω∗ →

S×M(Ω∗)I is injective. The mapping is also surjective because
−→
Ω∗ is universal. Thus,

the universal belief space
−→
Ω∗ is in a bijective relation to a subset of S ×M(Ω∗)I that

respects given introspective properties, establishing the second statement.

As in the proof of Theorem 1, Lemma 3 implies that the universal belief space
−→
Ω∗

is non-redundant. Also, by definition, for any ω∗ ∈ Ω∗, there exist a belief space
−→
Ω

and a state ω ∈ Ω such that ω∗ = h−→
Ω

(ω). Since h−→
Ω

associates, with each state ω ∈ Ω,
the players’ belief hierarchies h(ω) ∈ Ω∗ at the state ω, it follows that the space Ω∗

consists of all possible belief hierarchies that can be attained by some state of some
belief space.

For the rest of this subsection, technical remarks are in order. The proof of the
second statement of the theorem suggests that, when no introspective properties (i.e.,
no properties in Definition 2) are assumed,

(Θ∗, (t∗i )i∈I) : Ω∗ → S ×M(Ω∗)I

is indeed a belief isomorphism.24 Thus, the universal belief space Ω∗ is (measurably)
isomorphic to S×

∏
i∈I Ω∗i such that Ω∗i is (measurably) isomorphic to M(S×

∏
j∈I Ω∗j).

24One can formalize this insight from the fact that, when a given combination of properties of
beliefs is subsumed in the operation of M(·) (as, for instance, when no introspective properties are
assumed), a belief space forms a coalgebra in category theory. See, for instance, Moss and Viglizzo
(2004, 2006) and Viglizzo (2005) for an application of the theory of coalgebra to standard type
spaces. For this particular context, see Fukuda (2017) for a proof.
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ℵ0-Belief Spaces

ℵ1-Belief Spaces

λ-Belief Spaces

κ-Belief Spaces

Belief spaces
−→
Ω

with D = P(Ω)

The universal space
within a given class

Figure 2: The Role of the Domain Specification: ℵ1 < λ < κ.

When Truth Axiom is imposed, Ω∗∗ is a strict (and non-product) subset of S ×
M(Ω∗)I , because the players’ knowledge is “correlated” in that they can only know,
at each state, the events that hold true at that state.

In the special case in which Truth Axiom is not assumed while Positive Intro-
spection and Negative Introspection are assumed, somewhat informally, since each
player i is certain of her own beliefs, she would not need to reason about her own
beliefs. Thus, consider the class of possibility models (e.g., Brandenburger, 2003;
Brandenburger and Keisler, 2006) as follows: each state space has a product struc-
ture Ω =

∏
i∈I0 Ωi with I0 := I ∪ {0} and Ω0 = S, and each player’s type mapping

is given by the marginal ti(·) ◦ π−1
−i : Ω → M(Ω−i) where (i) π−i : Ω → Ω−i is the

projection with Ω−i :=
∏

j∈I0\{i}Ωj and (ii) ti only depends on Ωi (more formally,

ti((ωj)j∈I0) = ti((ω
′
j)j∈I0) if ωi = ω′i). While the formal and detailed comparison be-

tween the possibility models and the framework of this paper is beyond the scope of
this paper, one can apply the analyses of this paper to this restricted class of belief
spaces, and thus the universal belief space (i.e., the universal possibility model) would
exist and satisfy

Ω∗ = S ×
∏
i∈I

Ω∗i , where each Ω∗i is isomorphic to M

S × ∏
j∈I\{i}

Ω∗j

 , (12)

similarly to the case of the standard universal type space (replacing M with ∆).25

Finally, I briefly discuss the role of the domain specification. To make the exposi-
tion simplest, I impose no (logical or introspective) properties of beliefs. Then, I vary
infinite regular cardinals: Figure 2 considers ℵ0, ℵ1, λ, and κ, where ℵ1 < λ < κ. I

25In the context of probabilistic beliefs, Meier (2012) shows that, in the class of belief spaces in
which players’ beliefs satisfy introspection properties, its universal belief spaces admits the product
structure in the sense of Expression (12) (where M is replaced with ∆).
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also consider the class of belief spaces such that the domain of each belief space is
the power set as depicted by the inner-most ellipse of Figure 2.

If the class of belief spaces where the domain of a belief space is always the power
set has the universal belief space, then a bijection between Ω∗ and S × P(P(Ω∗))I

would exist, as M(Ω∗) = {0, 1}P(Ω∗) would be in a bijective relation to P(P(Ω∗)).
This is clearly impossible. This argument is closely related to the non-existence of a
“complete” possibility structure by Brandenburger (2003). Figure 2 illustrates this
point. On the one hand, each class of belief spaces admits the universal belief space
under the domain specification (“•” in each ellipse denotes the universal belief space
within the corresponding class).26 On the other hand, the inner-most ellipse of Figure
2 does not admit the universal belief space. Another way to highlight the importance
of domain specification is that, without fixing an infinite (regular) cardinal κ, one
cannot define the space (H,H) = (Hκ,Hκ).

3.2 Coherent Belief Hierarchies

This subsection defines a coherent subset of the hierarchies space H and shows that

the universal belief space
−→
Ω∗ (established in Theorem 1) is the largest coherent subset

of H. I start with the definition of a coherent subset of H.

Definition 9 (Coherent Belief Hierarchies). A subset Ω of H is coherent if it satisfies
the following. Take any (s, µ) ∈ Ω, where µ = (µi)i∈I and µi = (µαi )0≤α<κ with
µαi ∈M(Hα).

1. For any ordinals (α, β) with 0 ≤ β ≤ α < κ, if (πα|Ω)−1(Eα) = (πβ|Ω)−1(F β)
for some Eα ∈ Hα and F β ∈ Hβ, then

µαi (Eα) = µβi (F β) for all i ∈ I.

2. If any of the introspective properties of beliefs (recall Definition 2) is imposed,
then µ = (µi)i∈I satisfies the corresponding property.

(a) Truth Axiom. If µαi (Eα) = 1, then (s, µ) ∈ (πα|Ω)−1(Eα).

(b) Positive Introspection. If µαi (Eα) = 1, then

µαi ({(s′, (µ′j)j∈I) ∈ H | (µ′i)α ∈MEα}) = 1.

(c) Negative Introspection. If µαi (Eα) = 0, then

µαi ({(s′, (µ′j)j∈I) ∈ H | (µ′i)α ∈ ¬MEα}) = 1.

26Fixing a set I of players, a set (S,S) of states of nature, and some properties of beliefs, the
universal κ-belief space of I on (S,Aκ(S)) differs from the universal λ-belief space of I on (S,Aλ(S)),
whenever κ 6= λ (see also Fukuda, 2024b, Section 7.4).
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(d) Kripke Property. If
⋂
{E ∈ D | E = (πα|Ω)−1(Eα) and µαi (Eα) = 1 for some α <

κ and Eα ∈ Hα} ⊆ (πβ|Ω)−1(F β) for some β < κ and F β ∈ Hβ, then
µβi (F β) = 1.

Condition (1) states that, for each player i’s belief hierarchy µi = (µαi )0≤α<κ, any
two levels of beliefs (i.e., α and β) do not contradict one another. However, differently
from the case of probabilistic beliefs (e.g., Brandenburger and Dekel, 1993), coherency
requires that all different levels of beliefs, including transfinite levels, do not contradict
one another. Condition (2) requires that each player i’s belief hierarchy µi respects
the given introspective properties.

The next definition enables one to define the belief space
−→
Ω = 〈(Ω,D), (ti)i∈I ,Θ〉

if a subset Ω of H is coherent.

Definition 10. If Ω is a coherent subset of H, then I define the induced belief space−→
Ω = 〈(Ω,D), (ti)i∈I ,Θ〉 as follows.

1. D is a κ-algebra on Ω defined by

D := {(πα|Ω)−1(Eα) ∈ P(Ω) | Eα ∈ Hα for some α < κ}. (13)

2. Let Θ : (Ω,D)→ (S,S) be the projection π0|Ω.

3. I define ti : (Ω,D)→ (M(Ω,D),M(Ω,D)) by

ti(s, (µj)j∈I)((π
α|Ω)−1(Eα)) := µαi (Eα) for each Eα ∈ Hα. (14)

In Condition (1), the κ-algebra D is defined from H through Expression (13). The
mapping Θ is naturally defined by the projection through Condition (2). Condition
(3) defines each player’s type mapping ti. Condition (1) of Definition 9 ensures
that ti defined through Expression (14) is well-defined, i.e., the left-hand side of
the expression does not depend on a particular choice of α. Also, Condition (2)
of Definition 9 ensures that ti defined through Expression (14) respects the given
introspective properties.

Definitions 9 and 10 mean that a subset Ω of H is coherent (i) if each belief
hierarchy of each player in Ω is coherent in that any two levels of beliefs do not
contradict one another and (ii) if the set Ω is “belief-closed” in that Ω induces a
belief structure on itself. Since Ω, consisting of coherent belief hierarchies, induces a
belief structure on Ω itself, coherency of the belief hierarchies Ω is commonly certain.

Now, I show that
−→
Ω∗ is the largest coherent subset of H.

Theorem 2 (Ω∗ is the Largest Coherent Space). The set Ω∗ established in Theorem
1 is the largest coherent subset of H: (i) Ω∗ is coherent; and (ii) for any coherent

subset Ω of H, the hierarchy map h :
−→
Ω →

−→
Ω∗ is an inclusion map (so that Ω ⊆ Ω∗).
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The theorem roughly states that each player’s belief hierarchy in Ω∗ is coherent and
that any coherent belief hierarchies of the players belong to Ω∗. The key observation
is the definition of coherency (in Definition 9), which requires that all different levels
of beliefs, including transfinite levels, do not to contradict with each other. This
enables one to define the underlying type mapping ti on (Ω,D) through Expression
(14) in Definition 10 as long as the given set Ω is coherent because the collection D
forms a κ-algebra.27

4 Conclusion

Theorem 1 constructs the universal belief space as the set of belief hierarchies that
can be induced by some state of some belief space when beliefs are qualitative. This
paper shows that the following idea of Harsanyi (1967-68) extends to qualitative
beliefs beyond probabilistic ones: while a type induces a belief hierarchy, a belief
hierarchy that can be induced by some belief space is a type. Theorem 2 characterizes
the universal qualitative belief space as the largest coherent set of belief hierarchies,
extending the characterization of the universal type space for probabilistic beliefs (e.g.,
Brandenburger and Dekel, 1993; Mertens and Zamir, 1985) to qualitative beliefs.

A Appendix

A.1 Section 2.3 (Remark 1)

To see that type mappings and belief operators are equivalent, I provide the corre-
sponding definitions of properties of beliefs in terms of belief operators.

Definition A.1 (Propeties of Beliefs). Fix Bi : D → D.

1. The following properties of Bi are referred to as logical properties.

(a) No-Contradiction: Bi(∅) = ∅.
(b) Consistency: Bi(E) ⊆ (¬Bi)(E

c) for any E ∈ D.

(c) Monotonicity: Bi(E) ⊆ Bi(F ) for any E,F ∈ D with E ⊆ F .

(d) Necessitation: Bi(Ω) = Ω.

(e) λ-Conjunction:
⋂
E∈E Bi(E) ⊆ Bi(

⋂
E) for any E ⊆ D with 0 < |E| < λ.

2. The following properties of Bi are referred to as introspective properties.

27In the context of probabilistic beliefs, Fukuda (2024c) shows that, even when there is no topo-
logical assumption on an underlying set of states of nature, the universal type space is the largest set
of coherent belief hierarchies that satisfies common certainty of coherency (when coherency requires
that all different levels of beliefs, including transfinite but countable levels, do not contradict one
another).
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(a) Truth Axiom: Bi(E) ⊆ E for any E ∈ D.

(b) Positive Introspection: Bi(·) ⊆ BiBi(·).

(c) Negative Introspection: (¬Bi)(·) ⊆ Bi(¬Bi)(·).

(d) Kripke Property: for each (ω,E) ∈ Ω×D, ω ∈ Bi(E) if (and only if)

bBi(ω) ⊆ E, where bBi(ω) :=
⋂
{E ∈ D | ω ∈ Bi(E)}.

See the main text for the interpretation of each property. It can be shown that
Bi (resp., ti) satisfies a given property iff tBi (resp., Bti) satisfies it.

A.2 Section 3.1

Proof of Remark 3. First, H = (πα)−1(Hα) ∈ H. Second, if (πα)−1(Eα) ∈ H with
α < κ, then ¬(πα)−1(Eα) = (πα)−1(¬Eα) ∈ H. Third, take any subset A of ordinals
{α | α < κ} whose cardinality |A| is less than κ. Consider ((πα)−1(Eα))α∈A. Since
κ is regular (recall Footnote 14 or see the Online Appendix for the definition), its
supremum γ := supA has cardinality less than κ. Since (Hγ,Hγ) is a κ-algebra,⋂

α∈A

(πα)−1(Eα) = (πγ)−1

( ⋂
α∈A

(πγ,α)−1(Eα)︸ ︷︷ ︸
∈Hγ

)
∈ H.

The proof is complete.

Proof of Lemma 1. 1. Since hα = πα|Ω∗ ◦ h for all α < κ, it suffices to show that

h−1((πα|Ω∗)−1(Eα)) = (hα)−1(Eα) ∈ D for all α < κ and Eα ∈ Hα.

I prove the assertion by induction on α < κ.

Let α = 0. For any E0 ∈ S,

(h0)−1(E0) = Θ−1(E0) ∈ D.

For a successor ordinal α = β + 1, it is sufficient to show that

(ti ◦ (hβ)−1)−1(MHβ(Eβ)) ∈ D for each Eβ ∈ Hβ and i ∈ I.

Fix Eβ ∈ Hβ and i ∈ I. Then,

(ti ◦ (hβ)−1)−1(MHβ(Eβ)) = {ω ∈ Ω | ti(ω)((hβ)−1(Eβ)) = 1}
= t−1

i (MD((hβ)−1(Eβ))) ∈ D.
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For a limit ordinal α, if

h−1((πβ|Ω∗)−1(Eβ)) = (hβ)−1(Eβ) ∈ D for all β < α,

then it is clear that

h−1((πα|Ω∗)−1(Eα)) = (hα)−1(Eα) ∈ D.

The induction is complete.

2. For notational ease, I denote h = h−→
Ω

and h′ = h−→
Ω′

. It suffices to show by
induction on ordinals α < κ that

hα(ω) = (h′)α(ϕ(ω)) for each ω ∈ Ω.

Let α = 0. Since ϕ is a belief morphism,

h0(ω) = Θ(ω) = Θ′(ϕ(ω)) = (h′)0(ϕ(ω)) for each ω ∈ Ω.

Let α = β + 1 be a successor ordinal. Since I have

hβ+1(ω) =
(
hβ(ω), t(ω) ◦ (hβ)−1

)
and

(h′)β+1(ϕ(ω)) =
(
h′β(ϕ(ω)), t′(ϕ(ω)) ◦ (h′k)−1

)
,

it suffices to show that

t(ω) ◦ (hβ)−1 = t′(ϕ(ω)) ◦ (h′β)−1.

Now, since ϕ is a belief morphism, it follows that, for each i ∈ I,

t′i(ϕ(ω))
(
(h′β)−1(·)

)
= ti(ω)

(
ϕ−1

(
(h′β)−1(·)

))
= ti(ω)

((
h′β ◦ ϕ

)−1
(·)
)

= ti(ω)
(
(hβ)−1(·)

)
.

Let α be a limit ordinal. Fix ω ∈ Ω. By the definitions of hα and (h′)α, it is
immediate that hα(ω) = (h′)α(ϕ(ω)) if hβ(ω) = (h′)β(ϕ(ω)) for all β < α. The
induction is complete.

Proof of Lemma 2. Fix i ∈ I. I prove the results in the following five steps. The first
step shows that t∗i is a well-defined mapping on Ω∗. Fix ω∗ ∈ Ω∗. I show that, for
any ordinals (α, β) with 0 ≤ β ≤ α < κ, if

(πα|Ω∗)−1(Eα) = (πβ|Ω∗)−1(F β) for some Eα ∈ Hα and Eβ ∈ Hβ,
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then
(ω∗)α+1

i (Eα) = (ω∗)β+1
i (F β).

Observe first that, for any belief space
−→
Ω and ω ∈ Ω such that ω∗ = h(ω),

t∗i (ω
∗) ◦ (πα|Ω∗)−1 = (h(ω))α+1

i

= ti(ω) ◦ (hα)−1

= ti(ω) ◦ (πα|Ω∗ ◦ h)−1. (15)

Thus, I have

(ω∗)α+1
i (Eα) = ti(ω)((πα|Ω∗)−1(Eα))

= ti(ω)((πβ|Ω∗)−1(F β)) = (ω∗)β+1
i (F β).

This equation holds irrespective of a choice of belief spaces.
The second step establishes Equation (11). Indeed, it follows from Equation (15)

that, for each α < κ and Eα ∈ Hα,

t∗i (h(ω))((πα|Ω∗)−1(Eα)) = ti(ω)(h−1((πα|Ω∗)−1(Eα))).

The third step shows that t∗i inherits logical properties of beliefs so that it is a
mapping from Ω∗ into M(Ω∗).

1. No-Contradiction. For any ω∗ ∈ Ω∗, there are a belief space
−→
Ω and ω ∈ Ω such

that ω∗ = h(ω), and thus

t∗i (ω
∗)(∅) = ti(ω)(h−1(∅)︸ ︷︷ ︸

=∅

) = 0,

where the last equality follows because ti satisfies No-Contradiction.

2. Consistency. Suppose that there are ω∗ ∈ Ω∗ and E∗ ∈ D∗ such that t∗i (ω
∗)(E∗) =

1. Then, there are a belief space
−→
Ω and ω ∈ Ω such that ω∗ = h(ω) and

ti(ω)(h−1(E∗)) = 1. Consistency of ti implies

t∗i (ω
∗)(¬E∗) = ti(ω)(h−1(¬E∗)) = ti(ω)(¬h−1(E∗)) = 0.

3. Monotonicity. Take any ω∗ ∈ Ω∗ and E∗, F ∗ ∈ D∗ with E∗ ⊆ F ∗. Now, there

are a belief space
−→
Ω and ω ∈ Ω such that ω∗ = h(ω) and

t∗i (ω
∗)(E∗) = ti(ω)(h−1(E∗)) ≤ ti(ω)(h−1(F ∗)) = t∗i (ω

∗)(F ∗),

where the inequality follows from h−1(E∗) ⊆ h−1(F ∗) and Monotonicity of ti.
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4. λ-Conjunction. Take any non-empty subset F ⊆ D∗ with |F| < λ. Suppose

that t∗i (ω
∗)(F ∗) = 1 for all F ∗ ∈ F . Now, there are a belief space

−→
Ω and ω ∈ Ω

such that ω∗ = h(ω) and ti(ω)(h−1(F ∗)) = 1 for all F ∗ ∈ F . Since ti satisfies
λ-Conjunction, it follows that

1 = ti(ω)(
⋂
F ∗∈F

h−1(F ∗)) = ti(ω)(h−1(
⋂
F)),

establishing t∗i (ω
∗)(
⋂
F) = 1.

5. Necessitation. For any ω∗ ∈ Ω∗, there are a belief space
−→
Ω and ω ∈ Ω such that

ω∗ = h(ω) and

1 = ti(ω)(Ω) = ti(ω)(h−1(Ω∗)) = t∗i (ω
∗)(Ω∗),

where the first equality follows because ti satisfies Necessitation.

The fourth step shows that t∗i : (Ω∗,D∗) → (M(Ω∗),M(D∗)) is measurable. Let
E∗ = (πα|Ω∗)−1(Eα) with Eα ∈ Hα and α < κ. Then,

(t∗i )
−1(ME∗) = {ω∗ ∈ Ω∗ | (ω∗)α+1

i (Eα) = 1}
= {ω∗ ∈ Ω∗ | (ω∗)α+1

i ∈MEα} ∈ D∗.

The fifth step shows that t∗i inherits the introspective properties of beliefs.

1. Truth Axiom. Fix E∗ ∈ D∗. If t∗i (ω
∗)(E∗) = 1, then there exist a belief space

−→
Ω and ω ∈ Ω such that ω∗ = h(ω) and

1 = t∗i (ω
∗)(E∗) = ti(ω)(h−1(E∗)).

Now, Truth Axiom of ti implies ω ∈ h−1(E∗), and thus ω∗ = h(ω) ∈ E∗.

2. Positive Introspection. Fix E∗ ∈ D∗ and ω∗ ∈ Ω∗ such that t∗i (ω
∗)(E∗) = 1.

Then, there are a belief space
−→
Ω and ω ∈ Ω such that ω∗ = h(ω), 1 =

t∗i (ω
∗)(E∗) = ti(ω)(h−1(E∗)), and t∗i (ω

∗)((t∗i )
−1(ME∗)) = ti(ω)(h−1((t∗i )

−1(ME∗))).
Now, Positive Introspection of ti implies that

1 = ti(ω)(t−1
i (Mh−1(E∗))).

Next, I show that t−1
i (Mh−1(E∗)) = h−1((t∗i )

−1(ME∗)):

ω ∈ t−1
i (Mh−1(E∗)) iff ti(ω)(h−1(E∗)) = 1 iff t∗i (ω

∗)(E∗) = 1

iff h(ω) = ω∗ ∈ (t∗i )
−1(ME∗) iff ω ∈ h−1((t∗i )

−1(ME∗)).

Then, I obtain

1 = ti(ω)(t−1
i (Mh−1(E∗))) = ti(ω)(h−1((t∗i )

−1(ME∗))) = t∗i (ω
∗)((t∗i )

−1(ME∗)).
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3. Negative Introspection. Fix E∗ ∈ D∗ and ω∗ ∈ Ω∗ with t∗i (ω
∗)(E∗) = 0. Then,

there are a belief space
−→
Ω and ω ∈ Ω such that ω∗ = h(ω) and 0 = t∗i (ω

∗)(E∗) =
ti(ω)(h−1(E∗)). Now, Negative Introspection of ti implies that

1 = ti(ω)(¬t−1
i (Mh−1(E∗))).

Then, it follows from the previous argument that t−1
i (Mh−1(E∗)) = h−1((t∗i )

−1(ME∗)),
and hence I obtain

1 = ti(ω)(¬t−1
i (Mh−1(E∗))) = ti(ω)(h−1(¬(t∗i )

−1(ME∗))) = t∗i (ω
∗)(¬(t∗i )

−1(ME∗)).

4. Kripke Property. Observe that h(bti(ω)) ⊆ b∗t∗i (h(ω)) for each ω ∈ Ω. If

b∗t∗i (ω
∗) ⊆ E∗, then there are a belief space

−→
Ω and ω ∈ Ω such that ω∗ = h(ω),

and thus
bti(ω) ⊆ h−1(h(bti(ω))) ⊆ h−1(b∗t∗i (ω

∗)) ⊆ h−1(E∗).

By Kripke Property of
−→
Ω , it follows that

1 = ti(ω)(h−1(E∗)) = t∗i (ω
∗)(E∗),

as desired.

Proof of Lemma 3. I show by induction on ordinals α < κ that (h∗)α : Ω∗ → Hα is
the projection πα|Ω∗ , where note that (h∗)α = πα ◦ h∗. For α = 0, (h∗)0 = π0|Ω∗ .

Let α = β + 1 be a successor ordinal. Then, for each ω∗,

(h∗)β+1(ω∗) = ((h∗)β(ω∗), t∗(ω∗) ◦ ((h∗)β)−1)

= (πβ|Ω∗(ω∗), t∗(ω∗) ◦ (πβ|Ω∗)−1)

= (πβ|Ω∗(ω∗), (ω∗)β+1) = πβ+1|Ω∗(ω∗),

where t∗(ω∗) ◦ (πβ|Ω∗)−1 = (ω∗)β+1 follows from Equation (15).
For a limit ordinal α, the statement holds by construction. The induction is

complete.

A.3 Section 3.2

Proof of Theorem 2. Part (i). Consider the universal belief space
−→
Ω∗ established in

Theorem 1. By definition, Ω∗ is a subset of H. The entire proof of Theorem 1 implies
that Ω∗ is coherent and that the κ-algebra D∗ and the mappings Θ∗ and (t∗i )i∈I are
defined as in Definition 10.

Part (ii). Let Ω be a coherent subset ofH which respects the required introspective
properties. First, I show that 〈(Ω,D), (ti)i∈I ,Θ〉 is a belief space. To do so, it is enough
to show that ti satisfies the required logical properties of beliefs.
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1. No-Contradiction. I have ti(s, µ)(∅) = µαi (∅) = 0.

2. Consistency. If ti(s, µ)((πα|Ω)−1(Eα)) = 1 and ti(s, µ)(¬(πα|Ω)−1) = 1, then
µαi (Eα) = 1 and µαi (¬Eα) = 1, which contradicts the assumption that µαi is a
type satisfying Consistency (i.e., µαi ∈M(Hα)).

3. Monotonicity. Suppose that (πα|Ω)−1(Eα) ⊆ (πβ|Ω)−1(F β). Without loss of
generality, I can assume as if α = β. Since Eα ⊆ F β, I have

ti(s, µ)((πα|Ω)−1(Eα)) = µαi (Eα) ≤ µβi (F β) = ti(s, µ)((πβ|Ω)−1(F β)).

4. λ-Conjunction. Without loss of generality, suppose that ti(s, µ)((πα|Ω)−1(Eα)) =
1 for all Eα ∈ E , where E is a non-empty subset of Hα with |E| < λ. Then,

ti(s, µ)(
⋂
Eα∈E

(πα|Ω)−1(Eα)) = ti(s, µ)((πα|Ω)−1(
⋂
E)) = µαi (

⋂
E) = 1.

5. Necessitation. I have ti(s, µ)(Ω) = µαi (Hα) = 1.

Second, I show that the hierarchy map h :
−→
Ω →

−→
Ω∗ is an inclusion map. If α = 0,

then h0 = π0|Ω. For a successor ordinal α = β + 1, since t(s, µ) ◦ (πβ|Ω)−1 = µβ, it
follows that hα = πα|Ω. For a limit ordinal α, by construction, if hβ = πβ|Ω for all
β < α, then hα = πα|Ω.
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